Fabric intensity and shape parameters of the orientation tensor based on Vollmer (1990)
Value
numeric vector containing the fabric shape and intensity indices:
PPoint (Vollmer 1990). Range: (0, 1)
GGirdle (Vollmer 1990). Range: (0, 1)
RRandom (Vollmer 1990). Range: (0, 1)
BCylindricity (Vollmer 1990). Range: (0, 1)
CCylindricity or Fabric strength (Woodcock 1977). Range: (0,
Inf)ICylindricity or Fabric intensity (Lisle 1985). Range: (0, 5)
D"Distance" from uniformity, linear from R to P, and R to G (Vollmer 2020). Range: (0, 1). End members are: uniform D = 0, girdle D = 0.5, cluster D = 1. The 99% level for a test against uniformity for a sample size of 300 is D = 0.1.
UUniformity statistic of Mardia (1972)
References
Lisle, Richard J. (1985): "The use of the orientation tensor for the description and statistical testing of fabrics." Journal of Structural Geology 7.1: 115-117.
Mardia, Kantilal Varichand. (1975): "Statistics of directional data." Journal of the Royal Statistical Society Series B: Statistical Methodology 37.3: 349-371.
Vollmer, Frederick W. (1990): "An application of eigenvalue methods to structural domain analysis." Geological Society of America Bulletin 102.6: 786-791.
Vollmer, Frederick W. (2020): "Representing Progressive Fabric Paths on a Triangular Plot Using a Fabric Density Index and Crystal Axes Eigenvector Barycenters." Geological Society of America Abstracts. Vol. 52.
Woodcock, N. H. (1977): "Specification of fabric shapes using an eigenvalue method." Geological Society of America Bulletin 88.9: 1231-1236.
Examples
set.seed(20250411)
mu <- Line(120, 50)
x <- rvmf(100, mu = mu, k = 1)
vollmer(x)
#> P G R B C I
#> 0.13716550 0.06777223 0.79506227 0.20493773 0.49800008 2.45026231
#> D U
#> 0.15687782 12.30532499
# Pair objects:
vollmer(simongomez)
#> P G R B C I
#> 0.06798346 0.93155564 0.20395038 0.99953910 2.18056889 2.42554552
#> D U
#> 0.52339268 109.57596054
