Principal Stretches, Strain and Shape Parameters based on the Orientation Tensor.
Source:R/math.R
strain_shape.Rd
Principal Stretches, Strain and Shape Parameters based on the Orientation Tensor.
Details
stretch_ratios
Sqrt of eigenvalue ratios
strain_ratios
Log of stretch ratios
Ramsay
strain symmetry (Ramsay, 1983)
Woodcock
Woodcock shape
Flinn
Flinn strain intensity
Vollmer
Point, Girdle, Random, Cylindricity (B), and Uniform Distance (D) Indices (Vollmer 1990; 2020).
D
is a measure of the "distance" from uniformity, and is linear from R to P, and R to G. End members are: uniform D = 0, girdle D = 0.5, cluster D = 1. The 99% level for a test against uniformity for a sample size of 300 is D = 0.1.Nadai
natural octahedral unit strain and shear (Nadai, 1963)
Lisle_intensity
Intensity index (Lisle, 1985)
Waterson_intensity
strain intensity (Watterson, 1968)
lode
Lode parameter (Lode, 1926)
kind
Descriptive type of ellipsoid
MAD
maximum angular deviation (Kirschvink, 1980)
US
Uniformity statistic of Mardia (1972)
References
Flinn, Derek.(1963): "On the statistical analysis of fabric diagrams." Geological Journal 3.2: 247-253.
Kirschvink, J. (1980): The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal International, 62(3), 699-718.
Lisle, Richard J. (1985): "The use of the orientation tensor for the description and statistical testing of fabrics." Journal of Structural Geology 7.1: 115-117.
Lode, Walter (1926): "Versuche über den Einfluß der mittleren Hauptspannung auf das Fließen der Metalle Eisen, Kupfer und Nickel“ ("Experiments on the influence of the mean principal stress on the flow of the metals iron, copper and nickel"], Zeitschrift für Physik, vol. 36 (November), pp. 913–939, DOI: 10.1007/BF01400222
Mardia, Kantilal Varichand. (1975): "Statistics of directional data." Journal of the Royal Statistical Society Series B: Statistical Methodology 37.3: 349-371.
Nadai, A., and Hodge, P. G., Jr. (1963): "Theory of Flow and Fracture of Solids, vol. II." ASME. J. Appl. Mech. December 1963; 30(4): 640. https://doi.org/10.1115/1.3636654
Ramsay, John G. (1967): "Folding and fracturing of rocks." Mc Graw Hill Book Company 568.
Vollmer, Frederick W. (1990): "An application of eigenvalue methods to structural domain analysis." Geological Society of America Bulletin 102.6: 786-791.
Vollmer, Frederick W. (2020): "Representing Progressive Fabric Paths on a Triangular Plot Using a Fabric Density Index and Crystal Axes Eigenvector Barycenters." Geological Society of America Abstracts. Vol. 52.
Watterson, Juan. (1968): "Homogeneous deformation of the gneisses of Vesterland, south-west Greenland". No. 78. CA Reitzel.
Woodcock, N. H. (1977): "Specification of fabric shapes using an eigenvalue method." Geological Society of America Bulletin 88.9: 1231-1236.
Examples
set.seed(1)
mu <- Line(120, 50)
x <- rvmf(100, mu = mu, k = 20)
principal_stretch(x)
#> S1 S2 S3
#> 9.511749 2.220799 2.143520
principal_strain(x)
#> e1 e2 e3
#> 2.2525278 0.7978670 0.7624492
or_shape_params(x)
#> $stretch_ratios
#> Rxy Ryz Rxz
#> 4.283031 1.036052 4.437444
#>
#> $strain_ratios
#> e12 e13 e23
#> 1.45466083 1.49007857 0.03541774
#>
#> $Vollmer
#> P G R B C I D
#> 0.85541428 0.00674541 0.13784031 0.86215969 2.98015714 2.45061732 0.85710561
#>
#> $Flinn
#> intensity symmetry
#> 3.283228 91.062705
#>
#> $Ramsay
#> intensity symmetry
#> 2.117293 41.071535
#>
#> $Woodcock
#> strength shape
#> 1.490079 41.071535
#>
#> $Watterson_intensity
#> [1] 4.319083
#>
#> $Lisle_intensity
#> [1] 3.67315
#>
#> $Nadai
#> goct eoct
#> 1.388465 1.202446
#>
#> $Lode
#> [1] -0.9524619
#>
#> $kind
#> [1] "L"
#>
#> $MAD_approx
#> [1] 17.97803
#>
#> $MAD
#> [1] 17.97803
#>
#> $US
#> [1] 367.315
#>