3D orientation tensor, which characterize data distribution using
eigenvalue method. See (Watson 1966, Scheidegger 1965).
Usage
ortensor(x, norm = TRUE, w = NULL)
Arguments
- x
numeric. Can be three element vector, three column array, or an
object of class "line"
or "plane"
- norm
logical. Whether the tensor should be normalized or not.
- w
numeric. weightings
Details
The normalized orientation tensor is given as $$D = \frac{1}{n} (x_i, y_i, z_i) (x_i, y_i, z_i)^T$$
n = 1
Examples
set.seed(1)
x <- rfb(100, mu = Line(120, 50), k = 1, A = diag(c(10, 0, 0)))
ortensor(x)
#> [,1] [,2] [,3]
#> [1,] 0.09382190 -0.11845885 -0.07708109
#> [2,] -0.11845885 0.44543551 0.07830335
#> [3,] -0.07708109 0.07830335 0.46074259