3D orientation tensor, which characterize data distribution using
eigenvalue method. See (Watson 1966, Scheidegger 1965).
Usage
# S3 method for class 'spherical'
ortensor(x, norm = TRUE, w = NULL)
ortensor(x, norm = TRUE, w = NULL)
Arguments
- x
Object of class "Vec3"
, "Line"
or "Plane"
- norm
logical. Whether the tensor should be normalized or not.
- w
numeric. weightings
Details
The normalized orientation tensor is given as $$D = \frac{1}{n} (x_i, y_i, z_i) (x_i, y_i, z_i)^T$$
n = 1
Examples
set.seed(20250411)
x <- rfb(100, mu = Line(120, 50), k = 1, A = diag(c(10, 0, 0)))
ortensor(x)
#> [,1] [,2] [,3]
#> [1,] 0.08665142 -0.10561397 -0.06553388
#> [2,] -0.10561397 0.38231255 -0.02494706
#> [3,] -0.06553388 -0.02494706 0.53103602