Skip to contents

3D orientation tensor, which characterize data distribution using eigenvalue method. See (Watson 1966, Scheidegger 1965).

Usage

# S3 method for class 'spherical'
ortensor(x, norm = TRUE, w = NULL)

ortensor(x, norm = TRUE, w = NULL)

Arguments

x

Object of class "Vec3", "Line" or "Plane"

norm

logical. Whether the tensor should be normalized or not.

w

numeric. weightings

Value

matrix

Details

The normalized orientation tensor is given as $$D = \frac{1}{n} (x_i, y_i, z_i) (x_i, y_i, z_i)^T$$ n = 1

Examples

set.seed(20250411)
x <- rfb(100, mu = Line(120, 50), k = 1, A = diag(c(10, 0, 0)))
ortensor(x)
#>             [,1]        [,2]        [,3]
#> [1,]  0.08665142 -0.10561397 -0.06553388
#> [2,] -0.10561397  0.38231255 -0.02494706
#> [3,] -0.06553388 -0.02494706  0.53103602