Statistical estimators of the distribution of a set of vectors
Usage
v_mean(x, w = NULL)
v_var(x, w = NULL)
v_delta(x, w = NULL)
v_rdegree(x, w = NULL)
v_sde(x, w = NULL)
v_confidence_angle(x, w = NULL, alpha = 0.05)
estimate_k(x, w = NULL)
Details
v_mean
returns the spherical mean of a set of vectors
(object of class of x
). The function is shortcut for
vresultant(x, mean = TRUE)
when the argument is a "plane"
or "line"
object.
v_var
returns the spherical variance (numeric), based on resultant length
(Mardia 1972).
v_delta
returns the cone angle containing ~63% of the data (in degree if x
is a "plane"
or "line"
, or in radians
if otherwise). For enough large sample it approaches the angular standard
deviation ("csd"
) of the Fisher statistics.
v_rdegree
returns the degree of preferred orientation of vectors, range: (0, 1).
v_sde
returns the spherical standard error (numeric). If the number of
data is less than 25, if will print a additional message, that the output
value might not be a good estimator.
v_confidence_angle
returns the semi-vertical angle \(q\) about the
mean \(\mu\) (in degree if x
is a "plane"
or "line"
, or in radians
if otherwise). The \(100(1-\alpha)\%\) confidence interval is than given by \(\mu \pm q\).
estimate_k
returns the estimated concentration of the von Mises-Fisher distribution \(\kappa\) (after Sra, 2011).
Examples
set.seed(1234)
x <- rvmf(100, mu = Line(120, 50), k = 5)
v_mean(x)
#> azimuth plunge
#> [1,] 112.3871 52.61507
#> attr(,"class")
#> [1] "line"
v_var(x)
#> [1] 0.254336
v_delta(x)
#> [1] 41.78384
v_rdegree(x)
#> [1] 0.4913279
v_sde(x)
#> [1] 4.625489
v_confidence_angle(x)
#> [1] 8.032164
estimate_k(x)
#> [1] 4.104622
fisher_statistics(x)
#> $k
#> [1] 3.892488
#>
#> $csd
#> [1] 41.0555
#>
#> $csd_2s
#> [1] 70.96013
#>
#> $alpha
#> [1] 8.301902
#>
#' weights:
x2 <- Line(c(0, 0), c(0, 90))
v_mean(x2)
#> azimuth plunge
#> [1,] 0 45
#> attr(,"class")
#> [1] "line"
v_mean(x2, w = c(1, 2))
#> azimuth plunge
#> [1,] 0 63.43495
#> attr(,"class")
#> [1] "line"
v_var(x2)
#> [1] 0.2928932
v_var(x2, w = c(1, 2))
#> [1] 0.254644