The PT-techniques is a graphical solution of the Wallace-Bott hypothesis, i.e. fault slip occurs parallel to the maximum shear stress. It calculates PT-axes, kinematic planes (also movement planes), and the dihedra separation plane.
Value
list. p and t are the P and T axes as "Line" objects,
m and d are the M-planes and the dihedra separation planes as "Plane" objects
Examples
f <- Fault(c(120, 120, 100), c(60, 60, 50), c(110, 25, 30), c(58, 9, 23), c(1, -1, 1))
Fault_PT(f)
#> $p
#> Line object (n = 3):
#> azimuth plunge
#> [1,] 314.9690 75.19665
#> [2,] 248.4545 15.32834
#> [3,] 342.4517 46.65113
#>
#> $t
#> Line object (n = 3):
#> azimuth plunge
#> [1,] 116.2067 14.04868
#> [2,] 345.9919 25.60102
#> [3,] 241.3308 10.31893
#>
#> $m
#> Plane object (n = 3):
#> dip_direction dip
#> [1,] 27.35344 85.42739
#> [2,] 310.64119 30.43222
#> [3,] 322.06010 48.49732
#>
#> $d
#> Plane object (n = 3):
#> dip_direction dip
#> [1,] 289.7676 31.20884
#> [2,] 208.9071 83.18716
#> [3,] 210.2233 67.19866
#>
