Frequently orientations are subject to some symmetry group \(\mathbb{G}\), which is a finite set of rotations (satisfying certain properties). For any rotation \(Q\) in \(\mathbb{G}\), the rotation matrix \(Q \cdot R\) represents the same orientation as \(R\) does.
Usage
symmetry_group(
group = c("triclinic", "ray_in_plane", "line_in_plane", "monoclinic",
"trigonal-trapezohedral", "hexagonal-trapezohedral", "trivial")
)Details
| Symmetry | Enantiomorphic Point Group | Example |
triclinic | 1 | Ray in plane, plagioclase |
monoclinic | 2 | Line in plane, orthoclase, gypsum, muscovite, clinopyroxene, clinoamphibole |
orthorhombic | 222 | olivine, aragonite, marcasite, orthopyroxenes |
tetragonal | 4 | Pyramidal: zircon |
| 422 | Trapezohedral | |
trigonal | 3 | Pyramidal, Rhombohedral |
| 32 | Trapezohedral: \(\alpha\)-Quartz | |
hexagonal | 6 | Pyramidal, Rhombohedral |
| 622 | Trapezohedral: \(\beta\)-Quartz | |
cubic | 23 | Tetartoidal |
| 432 | Hexoctahedral: galena, pyrite, fluorite |
Examples
symmetry_group("triclinic")
#> [[1]]
#> [,1] [,2] [,3]
#> [1,] 1 0 0
#> [2,] 0 1 0
#> [3,] 0 0 1
#>
#> [[2]]
#> [,1] [,2] [,3]
#> [1,] -1 0 0
#> [2,] 0 1 0
#> [3,] 0 0 -1
#>
symmetry_group(2)
#> [[1]]
#> [,1] [,2] [,3]
#> [1,] 1 0 0
#> [2,] 0 1 0
#> [3,] 0 0 1
#>
#> [[2]]
#> [,1] [,2] [,3]
#> [1,] 1 0 0
#> [2,] 0 -1 0
#> [3,] 0 0 -1
#>
#> [[3]]
#> [,1] [,2] [,3]
#> [1,] -1 0 0
#> [2,] 0 1 0
#> [3,] 0 0 -1
#>
#> [[4]]
#> [,1] [,2] [,3]
#> [1,] -1 0 0
#> [2,] 0 -1 0
#> [3,] 0 0 1
#>