Usage
distance_binned_stats(
azi,
distance,
n.breaks = 10,
width.breaks = NULL,
unc = NULL,
prd = NULL,
prd.error = NULL,
kappa = 2,
R = 1000,
conf.level = 0.95,
...
)
Arguments
- azi
numeric. Azimuth values in degrees.
- distance
numeric. the independent variable along the values in
azi
are sorted, e.g. the plate boundary distances- n.breaks
numeric. number (greater than or equal to 2) giving the number of equal-sized intervals into which
distance
is to be cut. Default is 10. Will be ignored ifwidth.breaks
is specified.- width.breaks
numeric. The width of the intervals into which
distance
is to be cut.- unc
(optional) Uncertainties of
azi
(in degrees) acting as inverse weighting factors for statistics.- prd
(optional) numeric. A predicted orientation in degrees.
- prd.error
(optional) numeric. The uncertainty of the predicted orientation in degrees.
- kappa
numeric. Concentration parameter applied for the circular mode.
- R
integer. Number of bootstrap iterates for estimating the error of the dispersion.
- conf.level
The level of confidence for confidence interval and bootstrapped standard error of dispersion.
- ...
optional arguments passed to
ggplot2::cut_interval()
and [ggplot2::cut_width()
Value
tibble containing the n
values for azi
in each bin, min/median/max
distance of the bin, and the summary statistics for azi
.
If prd
is specified, the normal Chi-squared statistic, dispersion and its
standard error are returned as well.
Examples
data("plates")
plate_boundary <- subset(plates, plates$pair == "na-pa")
data("san_andreas")
PoR <- subset(nuvel1, nuvel1$plate.rot == "na")
san_andreas$distance <- distance_from_pb(
x = san_andreas,
PoR = PoR,
pb = plate_boundary,
tangential = TRUE
)
dat <- san_andreas |> cbind(PoR_shmax(san_andreas, PoR, "right"))
distance_binned_stats(dat$azi.PoR,
distance = dat$distance, width.breaks = 1,
unc = dat$unc, prd = 135
) |> head()
#> # A tibble: 6 × 19
#> bins n distance_min distance_median distance_max mean sd var lq
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 [-9.… 2 -9.23 -9.09 -8.95 NA NA NA NA
#> 2 (-8.… 8 -8.26 -7.91 -7.56 102. 44.7 0.703 71.4
#> 3 (-7.… 9 -7.47 -6.84 -6.60 134. 36.2 0.550 92.2
#> 4 (-6.… 11 -6.44 -6.18 -5.87 150. 29.4 0.410 126.
#> 5 (-5.… 10 -5.32 -5.06 -4.64 149. 37.9 0.583 65.5
#> 6 (-4.… 23 -4.41 -3.91 -3.57 159. 33.7 0.500 80.8
#> # ℹ 10 more variables: quasimedian <dbl>, uq <dbl>, median <dbl>, mode <dbl>,
#> # CI <dbl>, skewness <dbl>, kurtosis <dbl>, nchisq <dbl>, dispersion <dbl>,
#> # dispersion_sde <dbl>