Circular mean, standard deviation, variance, quasi-quantiles, mode, 95% confidence angle, standardized skewness and kurtosis
Usage
circular_summary(
  x,
  w = NULL,
  axial = TRUE,
  mode = FALSE,
  kappa = NULL,
  fisher.CI = FALSE,
  conf.level = 0.95,
  na.rm = FALSE
)Arguments
- x
- numeric vector. Values in degrees. 
- w
- (optional) Weights. A vector of positive numbers and of the same length as - x.
- axial
- logical. Whether the data are axial, i.e. pi-periodical ( - TRUE, the default) or directional, i.e. \(2 \pi\)-periodical (- FALSE).
- mode
- logical. Whether the circular mode should be calculated or not. 
- kappa
- numeric. von Mises distribution concentration parameter used for the circular mode. Will be estimated using - est.kappa()if not provided.
- fisher.CI
- logical. Whether Fisher's or the default Mardia/Batchelet's confidence interval should be calculated. 
- conf.level
- numeric. Level of confidence: \((1 - \alpha \%)/100\). ( - 0.95by default).
- na.rm
- logical value indicating whether - NAvalues in- xshould be stripped before the computation proceeds.
Examples
data("nuvel1")
PoR <- subset(nuvel1, nuvel1$plate.rot == "na")
sa.por <- PoR_shmax(san_andreas, PoR, "right")
circular_summary(sa.por$azi.PoR)
#>            n         mean           sd          var          25% quasi-median 
#> 1126.0000000  140.8777709   23.4183183    0.2840287  124.8495460  136.8274701 
#>          75%       median           CI     skewness     kurtosis            R 
#>  150.2163335  138.9450918    5.4487325   -0.1758456    1.4538046    0.7159713 
circular_summary(sa.por$azi.PoR, w = weighting(san_andreas$unc))
#>            n         mean           sd          var          25% quasi-median 
#> 1126.0000000  140.8843069   22.3029729    0.2614357  124.8483102  136.8328725 
#>          75%       median           CI     skewness     kurtosis            R 
#>  150.2174282  138.9450918    5.3646843   -0.2712938    1.6993452    0.7385643 
