Calculates bootstrapped estimates of the circular dispersion, its standard error and its confidence interval.
Usage
circular_dispersion_boot(
  x,
  y = NULL,
  w = NULL,
  w.y = NULL,
  R = 1000,
  conf.level = 0.95,
  ...
)Arguments
- x
- numeric values in degrees. 
- y
- numeric. The angle(s) about which the angles - xdisperse (in degrees).
- w, w.y
- (optional) Weights for - xand- y, respectively. A vector of positive numbers and of the same length as- x.
- R
- The number of bootstrap replicates. positive integer (1000 by default). 
- conf.level
- Level of confidence: \((1 - \alpha \%)/100\). ( - 0.95by default).
- ...
- optional arguments passed to - boot::boot()
Value
list containing:
- MLE
- the maximum likelihood estimate of the circular dispersion 
- sde
- standard error of MLE 
- CI
- lower and upper limit of the confidence interval of MLE 
Examples
data("nuvel1")
PoR <- subset(nuvel1, nuvel1$plate.rot == "na")
sa.por <- PoR_shmax(san_andreas, PoR, "right")
circular_dispersion(sa.por$azi.PoR, y = 135, w = weighting(san_andreas$unc))
#> [1] 0.1384805
circular_dispersion_boot(sa.por$azi.PoR, y = 135, w = weighting(san_andreas$unc), R = 1000)
#> $MLE
#> [1] 0.2610608
#> 
#> $sde
#> [1] 0.0113319
#> 
#> $CI
#> [1] 0.2375632 0.2833176
#> 
