Skip to contents

Produces a Q-Q plot of the data against a specified von Mises distribution to graphically assess the goodness of fit of the model.

Usage

vm_qqplot(
  x,
  w = NULL,
  axial = TRUE,
  mean = NULL,
  kappa = NULL,
  xlab = "von Mises quantile function",
  ylab = "Empirical quantile function",
  main = "von Mises Q-Q Plot",
  col = "#B63679FF",
  add_line = TRUE,
  ...
)

Arguments

x

numeric. Angles in degrees

w

numeric. optional weightings for x to estimate mean and kappa.

axial

Logical. Whether data are uniaxial (axial=FALSE)

mean

numeric. Circular mean of the von Mises distribution. If NULL, it will be estimated from x.

kappa

numeric. Concentration parameter of the von Mises distribution. If NULL, it will be estimated from x.

xlab, ylab, main

plot labels.

col

color for the dots.

add_line

logical. Whether to connect the points by straight lines?

...

graphical parameters

Value

plot

Examples

# von Mises distribution
x_vm <- rvm(100, mean = 0, kappa = 4)
vm_qqplot(x_vm, axial = FALSE, pch = 20)


# uniform distribution
x_unif <- runif(100, 0, 360)
vm_qqplot(x_unif, axial = FALSE, pch = 20)