Density, probability distribution function, quantiles, and random generation for the circular normal distribution with mean and kappa.
Usage
rvm(n, mean, kappa)
dvm(theta, mean, kappa)
pvm(theta, mean, kappa, from = NULL, tol = 1e-20)
qvm(p, mean = 0, kappa, from = NULL, tol = .Machine$double.eps^(0.6))
Arguments
- n
number of observations in degrees
- mean
mean in degrees
- kappa
concentration parameter
- theta
angular value in degrees
- from
if
NULL
is set to \(\mu-\pi\). This is the value from which the pvm and qvm are evaluated. in degrees.- tol
the precision in evaluating the distribution function or the quantile.
- p
numeric vector of probabilities with values in \([0,1]\).
Value
dvm
gives the density,
pvm
gives the probability of the von Mises distribution function,
rvm
generates random deviates (in degrees), and
qvm
provides quantiles (in degrees).
Examples
x <- rvm(100, mean = 90, kappa = 2)
dvm(x, mean = 90, kappa = 2)
#> [1] 0.505887510 0.478138494 0.318244951 0.432621062 0.326967604 0.372902527
#> [7] 0.304963616 0.328024119 0.193182651 0.507894074 0.013281577 0.451176773
#> [13] 0.178728989 0.515857172 0.138321643 0.462068479 0.417917149 0.482935548
#> [19] 0.494885825 0.505735970 0.009583728 0.411485278 0.252392989 0.489937889
#> [25] 0.359115776 0.368594044 0.046043060 0.439255354 0.416447381 0.501441564
#> [31] 0.503179719 0.170856590 0.431869095 0.246142225 0.498646417 0.501278266
#> [37] 0.014255796 0.488788161 0.140656755 0.511103710 0.482409721 0.467849398
#> [43] 0.242310057 0.333004834 0.013662820 0.384791300 0.490177362 0.035168128
#> [49] 0.511722334 0.492856360 0.188095562 0.226244762 0.072881804 0.012763882
#> [55] 0.422627248 0.203571299 0.515204302 0.298873287 0.497040593 0.359998578
#> [61] 0.315576284 0.515366912 0.372728343 0.487896919 0.066609092 0.499256709
#> [67] 0.508277953 0.171786330 0.506481068 0.455796664 0.185742899 0.441850442
#> [73] 0.410420283 0.148953393 0.385571101 0.347809109 0.515859172 0.403001514
#> [79] 0.500054877 0.507372960 0.513706351 0.449611203 0.474620240 0.032438880
#> [85] 0.069935148 0.513354661 0.514193617 0.480083493 0.176627398 0.515312282
#> [91] 0.478703207 0.513678425 0.283611625 0.485716302 0.218614066 0.010216541
#> [97] 0.515870312 0.223709206 0.456517077 0.199515458
pvm(x, mean = 90, kappa = 2)
#> [1] 0.571759536 0.360882160 0.814053334 0.705842238 0.192722481 0.231617426
#> [7] 0.175940976 0.806445165 0.103060554 0.564166091 0.006309138 0.318257237
#> [13] 0.905229396 0.496183127 0.072605135 0.334107399 0.723003860 0.369971170
#> [19] 0.396093635 0.427699560 0.001131250 0.730083300 0.139463525 0.615454125
#> [25] 0.219307839 0.772295762 0.025557679 0.697580927 0.275357325 0.413779628
#> [31] 0.580877726 0.909659616 0.706756641 0.135412002 0.405827150 0.413294757
#> [37] 0.992855709 0.617973196 0.073849581 0.549647800 0.368943394 0.656804363
#> [43] 0.867045356 0.802486011 0.006644475 0.757243420 0.614922368 0.980099386
#> [49] 0.546327379 0.608793502 0.899880931 0.122862054 0.039055713 0.005832365
#> [55] 0.282336852 0.890848700 0.481256035 0.828529715 0.401551529 0.220078056
#> [61] 0.183906846 0.516354327 0.231458000 0.619888867 0.964080908 0.592495475
#> [67] 0.437392098 0.909139405 0.569600178 0.324798078 0.901232462 0.305751447
#> [73] 0.731233114 0.078304976 0.243505794 0.790355533 0.503679211 0.739077976
#> [79] 0.590254174 0.433777613 0.466477622 0.316095716 0.645414746 0.018436052
#> [85] 0.037582266 0.463874614 0.470461315 0.635507867 0.093582234 0.482805752
#> [91] 0.638079679 0.533736427 0.160567496 0.375550565 0.881819070 0.997279506
#> [97] 0.497208998 0.121298807 0.674158882 0.106759757
qvm(c(.25, .5, .75), mean = 90, kappa = 2)
#> [1] 59.65254 90.00000 120.34746