Skip to contents

[Superseded] A generic function for applying a function to rolling margins of an array along an additional value.

Usage

distroll_circstats(
  x,
  distance,
  FUN,
  width = NULL,
  min_n = 2,
  align = c("right", "center", "left"),
  w = NULL,
  sort = TRUE,
  ...
)

distroll_confidence(
  x,
  distance,
  w = NULL,
  width = NULL,
  min_n = 2,
  align = c("right", "center", "left"),
  sort = TRUE,
  ...
)

distroll_dispersion(
  x,
  y,
  w = NULL,
  w.y = NULL,
  distance,
  width = NULL,
  min_n = 2,
  align = c("right", "center", "left"),
  sort = TRUE,
  ...
)

distroll_dispersion_sde(
  x,
  y,
  w = NULL,
  w.y = NULL,
  distance,
  width = NULL,
  min_n = 2,
  align = c("right", "center", "left"),
  sort = TRUE,
  ...
)

Arguments

x, y

vectors of numeric values in degrees. length(y) is either 1 or length(x)

distance

numeric. the independent variable along the values in x are sorted, e.g. the plate boundary distances

FUN

the function to be applied

width

numeric. the range across distance on which FUN should be applied on x. If NULL, then width is a number that separates the distances in 10 equal groups.

min_n

integer. The minimum values that should be considered in FUN (2 by default), otherwise NA.

align

specifies whether the index of the result should be left- or right-aligned or centered (default) compared to the rolling window of observations. This argument is only used if width represents widths.

w

numeric. the weighting for x

sort

logical. Should the values be sorted after distance prior to applying the function (TRUE by default).

...

optional arguments to FUN

w.y

numeric. the weighting for y

Value

two-column vectors of (sorted) x and the rolled statistics along distance.

Note

distroll_circstats() and friends are complete, and for new code it is recommended switching to distance_binned_stats(), which is fasrter, easier to use, more featureful, and still under active development.

Examples

data("plates")
plate_boundary <- subset(plates, plates$pair == "na-pa")
data("san_andreas")
PoR <- subset(nuvel1, nuvel1$plate.rot == "na")
san_andreas$distance <- distance_from_pb(
  x = san_andreas,
  PoR = PoR,
  pb = plate_boundary,
  tangential = TRUE
)
dat <- san_andreas |> cbind(PoR_shmax(san_andreas, PoR, "right"))

distroll_circstats(dat$azi.PoR,
  distance = dat$distance,
  w = 1 / dat$unc, FUN = circular_mean
) |> head()
#> Warning: `distroll_circstats()` was deprecated in tectonicr 0.4.4.9009.
#>  Please use `distance_binned_stats()` instead.
#>       distance         x   n
#> [1,] -9.226505  68.11323   9
#> [2,] -7.604482 127.98953  19
#> [3,] -5.982458 155.84338  14
#> [4,] -4.360435 154.02577  39
#> [5,] -2.738412 138.55072 125
#> [6,] -1.116388 138.29357 759
distroll_confidence(dat$azi.PoR, distance = dat$distance, w = 1 / dat$unc) |> head()
#>       distance          x   n
#> [1,] -9.226505 147.581596   9
#> [2,] -7.604482  44.732416  19
#> [3,] -5.982458 101.990075  14
#> [4,] -4.360435  43.031293  39
#> [5,] -2.738412   9.675720 125
#> [6,] -1.116388   4.369003 759
distroll_dispersion(dat$azi.PoR,
  y = 135,
  distance = dat$distance, w = 1 / dat$unc
) |> head()
#>       distance          x   n
#> [1,] -9.226505 0.56974161   9
#> [2,] -7.604482 0.31555788  19
#> [3,] -5.982458 0.39396588  14
#> [4,] -4.360435 0.32627346  39
#> [5,] -2.738412 0.06582746 125
#> [6,] -1.116388 0.09488957 759
distroll_dispersion_sde(dat$azi.PoR,
  y = 135,
  distance = dat$distance, w = 1 / dat$unc, R = 100
) |> head()
#>       distance           x   n
#> [1,] -9.226505 0.201484943   9
#> [2,] -7.604482 0.159818950  19
#> [3,] -5.982458 0.220841424  14
#> [4,] -4.360435 0.128962883  39
#> [5,] -2.738412 0.021238920 125
#> [6,] -1.116388 0.009849735 759

# New functions
distance_binned_stats(
  dat$azi.PoR,
  distance = dat$distance, width.breaks = 1, unc = dat$unc, prd = 135
) |> head()
#> # A tibble: 6 × 19
#>   bins      n distance_min distance_median distance_max  mean    sd    var    lq
#>   <fct> <int>        <dbl>           <dbl>        <dbl> <dbl> <dbl>  <dbl> <dbl>
#> 1 [-9.…     2        -9.23           -9.09        -8.95   NA   NA   NA      NA  
#> 2 (-8.…     8        -8.26           -7.91        -7.56  102.  44.7  0.703  71.4
#> 3 (-7.…     9        -7.47           -6.84        -6.60  134.  36.2  0.550  92.2
#> 4 (-6.…    11        -6.44           -6.18        -5.87  150.  29.4  0.410 126. 
#> 5 (-5.…    10        -5.32           -5.06        -4.64  149.  37.9  0.583  65.5
#> 6 (-4.…    23        -4.41           -3.91        -3.57  159.  33.7  0.500  80.8
#> # ℹ 10 more variables: quasimedian <dbl>, uq <dbl>, median <dbl>, mode <dbl>,
#> #   CI <dbl>, skewness <dbl>, kurtosis <dbl>, nchisq <dbl>, dispersion <dbl>,
#> #   dispersion_sde <dbl>