A generic function for applying a function to rolling margins of an array
along an additional value.
Usage
distroll_circstats(
x,
distance,
FUN,
width = NULL,
min_n = 2,
align = c("right", "center", "left"),
w = NULL,
sort = TRUE,
...
)
distroll_confidence(
x,
distance,
w = NULL,
width = NULL,
min_n = 2,
align = c("right", "center", "left"),
sort = TRUE,
...
)
distroll_dispersion(
x,
y,
w = NULL,
w.y = NULL,
distance,
width = NULL,
min_n = 2,
align = c("right", "center", "left"),
sort = TRUE,
...
)
distroll_dispersion_sde(
x,
y,
w = NULL,
w.y = NULL,
distance,
width = NULL,
min_n = 2,
align = c("right", "center", "left"),
sort = TRUE,
...
)
Arguments
- x, y
vectors of numeric values in degrees.
length(y)
is either 1 orlength(x)
- distance
numeric. the independent variable along the values in
x
are sorted, e.g. the plate boundary distances- FUN
the function to be applied
- width
numeric. the range across
distance
on whichFUN
should be applied onx
. IfNULL
, then width is a number that separates the distances in 10 equal groups.- min_n
integer. The minimum values that should be considered in
FUN
(2 by default), otherwiseNA
.- align
specifies whether the index of the result should be left- or right-aligned or centered (default) compared to the rolling window of observations. This argument is only used if width represents widths.
- w
numeric. the weighting for
x
- sort
logical. Should the values be sorted after
distance
prior to applying the function (TRUE
by default).- ...
optional arguments to
FUN
- w.y
numeric. the weighting for
y
Note
distroll_circstats()
and friends are complete, and for new code it is
recommended switching to distance_binned_stats()
,
which is fasrter, easier to use, more featureful, and still under active development.
Examples
data("plates")
plate_boundary <- subset(plates, plates$pair == "na-pa")
data("san_andreas")
PoR <- subset(nuvel1, nuvel1$plate.rot == "na")
san_andreas$distance <- distance_from_pb(
x = san_andreas,
PoR = PoR,
pb = plate_boundary,
tangential = TRUE
)
dat <- san_andreas |> cbind(PoR_shmax(san_andreas, PoR, "right"))
distroll_circstats(dat$azi.PoR,
distance = dat$distance,
w = 1 / dat$unc, FUN = circular_mean
) |> head()
#> Warning: `distroll_circstats()` was deprecated in tectonicr 0.4.4.9009.
#> ℹ Please use `distance_binned_stats()` instead.
#> distance x n
#> [1,] -9.226505 68.11323 9
#> [2,] -7.604482 127.98953 19
#> [3,] -5.982458 155.84338 14
#> [4,] -4.360435 154.02577 39
#> [5,] -2.738412 138.55072 125
#> [6,] -1.116388 138.29357 759
distroll_confidence(dat$azi.PoR, distance = dat$distance, w = 1 / dat$unc) |> head()
#> distance x n
#> [1,] -9.226505 147.581596 9
#> [2,] -7.604482 44.732416 19
#> [3,] -5.982458 101.990075 14
#> [4,] -4.360435 43.031293 39
#> [5,] -2.738412 9.675720 125
#> [6,] -1.116388 4.369003 759
distroll_dispersion(dat$azi.PoR,
y = 135,
distance = dat$distance, w = 1 / dat$unc
) |> head()
#> distance x n
#> [1,] -9.226505 0.56974161 9
#> [2,] -7.604482 0.31555788 19
#> [3,] -5.982458 0.39396588 14
#> [4,] -4.360435 0.32627346 39
#> [5,] -2.738412 0.06582746 125
#> [6,] -1.116388 0.09488957 759
distroll_dispersion_sde(dat$azi.PoR,
y = 135,
distance = dat$distance, w = 1 / dat$unc, R = 100
) |> head()
#> distance x n
#> [1,] -9.226505 0.201484943 9
#> [2,] -7.604482 0.159818950 19
#> [3,] -5.982458 0.220841424 14
#> [4,] -4.360435 0.128962883 39
#> [5,] -2.738412 0.021238920 125
#> [6,] -1.116388 0.009849735 759
# New functions
distance_binned_stats(
dat$azi.PoR,
distance = dat$distance, width.breaks = 1, unc = dat$unc, prd = 135
) |> head()
#> # A tibble: 6 × 19
#> bins n distance_min distance_median distance_max mean sd var lq
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 [-9.… 2 -9.23 -9.09 -8.95 NA NA NA NA
#> 2 (-8.… 8 -8.26 -7.91 -7.56 102. 44.7 0.703 71.4
#> 3 (-7.… 9 -7.47 -6.84 -6.60 134. 36.2 0.550 92.2
#> 4 (-6.… 11 -6.44 -6.18 -5.87 150. 29.4 0.410 126.
#> 5 (-5.… 10 -5.32 -5.06 -4.64 149. 37.9 0.583 65.5
#> 6 (-4.… 23 -4.41 -3.91 -3.57 159. 33.7 0.500 80.8
#> # ℹ 10 more variables: quasimedian <dbl>, uq <dbl>, median <dbl>, mode <dbl>,
#> # CI <dbl>, skewness <dbl>, kurtosis <dbl>, nchisq <dbl>, dispersion <dbl>,
#> # dispersion_sde <dbl>