Weighted version of the Rayleigh test (or V0-test) for uniformity against a distribution with a priori expected von Mises concentration.
Arguments
- x
numeric vector. Values in degrees
- mu
The a priori expected direction (in degrees) for the alternative hypothesis.
- w
numeric vector weights of length
length(x)
. IfNULL
, the non-weighted Rayleigh test is performed.- axial
logical. Whether the data are axial, i.e. \(\pi\)-periodical (
TRUE
, the default) or directional, i.e. \(2 \pi\)-periodical (FALSE
).- quiet
logical. Prints the test's decision.
Value
a list with the components:
R
orC
mean resultant length or the dispersion (if
mu
is specified). Small values ofR
(large values ofC
) will reject uniformity. Negative values ofC
indicate that vectors point in opposite directions (also lead to rejection).statistic
Test statistic
p.value
significance level of the test statistic
Details
The Null hypothesis is uniformity (randomness). The alternative is a
distribution with a (specified) mean direction (mu
).
If statistic >= p.value
, the null hypothesis of randomness is rejected and
angles derive from a distribution with a (or the specified) mean direction.
Examples
# Load data
data("cpm_models")
data(san_andreas)
PoR <- equivalent_rotation(subset(cpm_models, model == "NNR-MORVEL56"), "na", "pa")
sa.por <- PoR_shmax(san_andreas, PoR, "right")
data("iceland")
PoR.ice <- equivalent_rotation(subset(cpm_models, model == "NNR-MORVEL56"), "eu", "na")
ice.por <- PoR_shmax(iceland, PoR.ice, "out")
data("tibet")
PoR.tib <- equivalent_rotation(subset(cpm_models, model == "NNR-MORVEL56"), "eu", "in")
tibet.por <- PoR_shmax(tibet, PoR.tib, "in")
# GOF test:
weighted_rayleigh(tibet.por$azi.PoR, mu = 90, w = 1 / tibet$unc)
#> Reject Null Hypothesis
#> $C
#> [1] 0.5321474
#>
#> $statistic
#> [1] 25.68679
#>
#> $p.value
#> [1] 2.004315e-143
#>
weighted_rayleigh(ice.por$azi.PoR, mu = 0, w = 1 / iceland$unc)
#> Reject Null Hypothesis
#> $C
#> [1] 0.3728874
#>
#> $statistic
#> [1] 11.67322
#>
#> $p.value
#> [1] 1.826316e-32
#>
weighted_rayleigh(sa.por$azi.PoR, mu = 135, w = 1 / san_andreas$unc)
#> Reject Null Hypothesis
#> $C
#> [1] 0.8042366
#>
#> $statistic
#> [1] 38.16524
#>
#> $p.value
#> [1] 3.589557e-315
#>