Watson's test statistic is a rotation-invariant Cramer - von Mises test
Usage
watson_test(
x,
alpha = 0,
dist = c("uniform", "vonmises"),
axial = TRUE,
mu = NULL,
quiet = FALSE
)
Arguments
- x
numeric vector. Values in degrees
- alpha
Significance level of the test. Valid levels are
0.01
,0.05
, and0.1
. This argument may be omitted (NULL
, the default), in which case, a range for the p-value will be returned.- dist
Distribution to test for. The default,
"uniform"
, is the uniform distribution."vonmises"
tests the von Mises distribution.- axial
logical. Whether the data are axial, i.e. \(\pi\)-periodical (
TRUE
, the default) or circular, i.e. \(2 \pi\)-periodical (FALSE
).- mu
(optional) The specified mean direction (in degrees) in alternative hypothesis
- quiet
logical. Prints the test's decision.
Details
If statistic > p.value
, the null hypothesis is rejected.
If not, randomness (uniform distribution) cannot be excluded.
Examples
# Example data from Mardia and Jupp (2001), pp. 93
pidgeon_homing <- c(55, 60, 65, 95, 100, 110, 260, 275, 285, 295)
watson_test(pidgeon_homing, alpha = .05)
#> Do Not Reject Null Hypothesis
#> $statistic
#> [1] 0.1153633
#>
#> $p.value
#> [1] 0.187
#>
# San Andreas Fault Data:
data(san_andreas)
data("nuvel1")
PoR <- subset(nuvel1, nuvel1$plate.rot == "na")
sa.por <- PoR_shmax(san_andreas, PoR, "right")
watson_test(sa.por$azi.PoR, alpha = .05)
#> Reject Null Hypothesis
#> $statistic
#> [1] 52.14744
#>
#> $p.value
#> [1] 0.187
#>
watson_test(sa.por$azi.PoR, alpha = .05, dist = "vonmises")
#> Reject Null Hypothesis
#> $statistic
#> [1] 5.386914
#>
#> $p.value
#> [1] 0.113
#>