Skip to contents

Kuiper's test statistic is a rotation-invariant Kolmogorov-type test statistic. The critical values of a modified Kuiper's test statistic are used according to the tabulation given in Stephens (1970).

Usage

kuiper_test(x, alpha = 0, axial = TRUE, quiet = FALSE)

Arguments

x

numeric vector containing the circular data which are expressed in degrees

alpha

Significance level of the test. Valid levels are 0.01, 0.05, and 0.1. This argument may be omitted (NULL, the default), in which case, a range for the p-value will be returned.

axial

logical. Whether the data are axial, i.e. \(\pi\)-periodical (TRUE, the default) or circular, i.e. \(2 \pi\)-periodical (FALSE).

quiet

logical. Prints the test's decision.

Value

list containing the test statistic statistic and the significance level p.value.

Details

If statistic > p.value, the null hypothesis is rejected. If not, randomness (uniform distribution) cannot be excluded.

Examples

# Example data from Mardia and Jupp (2001), pp. 93
pidgeon_homing <- c(55, 60, 65, 95, 100, 110, 260, 275, 285, 295)
kuiper_test(pidgeon_homing, alpha = .05)
#> Reject Null Hypothesis
#> $statistic
#> [1] 2.262115
#> 
#> $p.value
#> [1] 1.747
#> 

# San Andreas Fault Data:
data(san_andreas)
data("nuvel1")
PoR <- subset(nuvel1, nuvel1$plate.rot == "na")
sa.por <- PoR_shmax(san_andreas, PoR, "right")
kuiper_test(sa.por$azi.PoR, alpha = .05)
#> Reject Null Hypothesis
#> $statistic
#> [1] 16.60463
#> 
#> $p.value
#> [1] 1.747
#>