Spatial interpolation of SHmax in PoR coordinate reference system
Source:R/interpolation.R
PoR_stress2grid.Rd
The data is transformed into the PoR system before the interpolation. The interpolation grid is returned in geographical coordinates and azimuths.
Usage
PoR_stress2grid(
x,
PoR,
grid = NULL,
PoR_grid = TRUE,
lon_range = NULL,
lat_range = NULL,
gridsize = 2.5,
...
)
PoR_stress2grid_stats(
x,
PoR,
grid = NULL,
PoR_grid = TRUE,
lon_range = NULL,
lat_range = NULL,
gridsize = 2.5,
...
)
Arguments
- x
sf
object containing- azi
SHmax in degree
- unc
Uncertainties of SHmax in degree
- type
Methods used for the determination of the orientation of SHmax
- PoR
Pole of Rotation.
"data.frame"
or object of class"euler.pole"
containing the geographical coordinates of the Euler pole- grid
(optional) Point object of class
sf
.- PoR_grid
logical. Whether the grid should be generated based on the coordinate range in the PoR (
TRUE
, the default) CRS or the geographical CRS (FALSE
). Is ignored ifgrid
is specified.- lon_range, lat_range
(optional) numeric vector specifying the minimum and maximum longitudes and latitudes (are ignored if
"grid"
is specified).- gridsize
Numeric. Target spacing of the regular grid in decimal degree. Default is 2.5 (is ignored if
grid
is specified)- ...
Arguments passed to
stress2grid()
Value
sf
object containing
- lon,lat
longitude and latitude in geographical CRS (in degrees)
- lon.PoR,lat.PoR
longitude and latitude in PoR CRS (in degrees)
- azi
geographical mean SHmax in degree
- azi.PoR
PoR mean SHmax in degree
- sd
Standard deviation of SHmax in degrees
- R
Search radius in km
- mdr
Mean distance of datapoints per search radius
- N
Number of data points in search radius
Examples
data("san_andreas")
data("nuvel1")
PoR <- subset(nuvel1, nuvel1$plate.rot == "na")
PoR_stress2grid(san_andreas, PoR)
#> Simple feature collection with 979 features and 10 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -125.0802 ymin: 21.44743 xmax: -106.3859 ymax: 41.36318
#> Geodetic CRS: WGS 84
#> # A tibble: 979 × 11
#> lon.PoR lat.PoR azi.PoR sd R N mdr geometry
#> * <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <POINT [°]>
#> 1 -84.8 52.6 160. 24.6 450 46 0.922 (-125.0802 34.07892)
#> 2 -84.8 52.6 156. 22.8 500 85 0.887 (-125.0802 34.07892)
#> 3 -84.8 52.6 157. 21.1 550 187 0.891 (-125.0802 34.07892)
#> 4 -84.8 52.6 150. 21.1 600 298 0.867 (-125.0802 34.07892)
#> 5 -84.8 52.6 143. 21.4 650 385 0.837 (-125.0802 34.07892)
#> 6 -84.8 52.6 142. 19.7 700 483 0.817 (-125.0802 34.07892)
#> 7 -84.8 52.6 141. 18.7 750 566 0.791 (-125.0802 34.07892)
#> 8 -84.8 52.6 139. 18.4 800 703 0.786 (-125.0802 34.07892)
#> 9 -84.8 52.6 139. 18.3 850 772 0.760 (-125.0802 34.07892)
#> 10 -84.8 52.6 139. 18.1 900 818 0.732 (-125.0802 34.07892)
#> # ℹ 969 more rows
#> # ℹ 3 more variables: lat <dbl>, lon <dbl>, azi <dbl>
if (FALSE) { # \dontrun{
PoR_stress2grid_stats(san_andreas, PoR)
} # }