Calculates the direction of maximum horizontal stress using only the directions of the principal stress and \(R = \frac{S1 - S2}{S1 - S3}\). This function Equations 11 and 10 from Lund and Townend (2007).
Arguments
- S1, S2, S3
The principal stress orientations. The variables hold the coordinates in the North, East and Down geographical coordinate system, e.g.
S1 = c(s1N,s1E,s1D). Given as object of class"Vec3"or"Line"- R
numeric. Relative magnitude of
S2with respect toS1andS3: \(R = \frac{S1 - S2}{S1 - S3}\). Values ranging from 0 to 1, with 0 beingS1==S2and 1 beingS2==S3. Equivalent to the stress shape ratio of Gephart & Forsyth (1984).- tol
Tolerance of comparison.
- ortho.tol
tolerance angle (in degree) for orthogonality check of the three principal stress vectors.
Value
The direction of SH from North as numeric angle in degrees (radians if all principal stress axes were given as "Vec3" objects).
References
Lund and Townend, (2007). Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor, Geophys. J. Int., doi:doi:10.1111/j.1365-246X.2007.03468.x .
See also
slip_inversion() for stress inversion of fault slip data.
Examples
# first example from https://www.snsn.se/SH/SHcode/benchmark.out
S1 <- Line(250.89, 70.07)
S3 <- Line(103.01, 17.07)
S2 <- crossprod(S3, S1)
SH(S1, S2, S3, R = 1) # 70.89
#> [1] 70.89
R <- seq(0, 1, .05)
cbind(R, SH = SH(S1, S2, S3, R = R))
#> R SH
#> [1,] 0.00 13.01021
#> [2,] 0.05 13.18337
#> [3,] 0.10 13.37695
#> [4,] 0.15 13.59476
#> [5,] 0.20 13.84162
#> [6,] 0.25 14.12371
#> [7,] 0.30 14.44908
#> [8,] 0.35 14.82843
#> [9,] 0.40 15.27621
#> [10,] 0.45 15.81249
#> [11,] 0.50 16.46586
#> [12,] 0.55 17.27842
#> [13,] 0.60 18.31445
#> [14,] 0.65 19.67656
#> [15,] 0.70 21.53704
#> [16,] 0.75 24.20154
#> [17,] 0.80 28.23884
#> [18,] 0.85 34.69668
#> [19,] 0.90 45.01043
#> [20,] 0.95 58.66746
#> [21,] 1.00 70.89000