Calculates the direction of maximum horizontal stress using only the directions of the principal stress and \(R = \frac{S1 - S2}{S1 - S3}\). This function Equations 11 and 10 from Lund and Townend (2007).
Arguments
- S1, S2, S3
numeric three-column vectors. The principal stress orientations. The variables hold the coordinates in the North, East and Down geographical coordinate system, e.g.
S1 = c(s1N,s1E,s1D)
- R
numeric. Relative magnitude of
S2
with respect toS1
andS3
: \(R = \frac{S1 - S2}{S1 - S3}\). Values ranging from 0 to 1, with 0 beingS1==S2
and 1 beingS2==S3
.- tol
Tolerance of comparison.
- ortho.tol
tolerance angle (in radians) for orthogonality check of the three principal stress vectors.
References
Lund and Townend, (2007). Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor, Geophys. J. Int., doi:doi:10.1111/j.1365-246X.2007.03468.x .
Examples
# first example from https://www.snsn.se/SH/SHcode/benchmark.out
S1 <- Line(250.89, 70.07)
S3 <- Line(103.01, 17.07)
S2 <- vcross(S3, S1)
SH(S1, S2, S3, R = 1) # 70.89
#> [1] 70.89
R <- seq(0, 1, .05)
cbind(R, SH = sapply(R, function(x) {
SH(S1, S2, S3, R = x)
}))
#> R SH
#> [1,] 0.00 13.01021
#> [2,] 0.05 13.18337
#> [3,] 0.10 13.37695
#> [4,] 0.15 13.59476
#> [5,] 0.20 13.84162
#> [6,] 0.25 14.12371
#> [7,] 0.30 14.44908
#> [8,] 0.35 14.82843
#> [9,] 0.40 15.27621
#> [10,] 0.45 15.81249
#> [11,] 0.50 16.46586
#> [12,] 0.55 17.27842
#> [13,] 0.60 18.31445
#> [14,] 0.65 19.67656
#> [15,] 0.70 21.53704
#> [16,] 0.75 24.20154
#> [17,] 0.80 28.23884
#> [18,] 0.85 34.69668
#> [19,] 0.90 45.01043
#> [20,] 0.95 58.66746
#> [21,] 1.00 70.89000