The cone or plane best fit of conically or cylindrical disposed s-plane poles
Source:R/best_pole.R
best_pole.RdFinding the best fit pole of rotation for a given set of points that are assumed to lie on a mutual small or great circle circle using Ramsay 1967 algorithm
Value
numeric vector with
x,y,zCartesian coordinates of best fit pole of plane or cone axis,
eresidual of the sum of square of the deviations of the observed poles to the planes from the best fit pole, and
K(only for cones) half apical angle of best fit cone (in radians).
References
Ramsay, 1967, p. 18-21
Ramsay, J. G. (1967). Folding and Fracturing of Rocks. McGraw-Hill.
Examples
if (FALSE) { # \dontrun{
# example from Ramsay, 1967, p. 20
x <- rbind(
c(-67, -31, -71),
c(-62, -53, -50),
c(-62, -75, -34),
c(-58, 85, -34),
c(-79, 40, -52),
c(90, 14, -75),
c(80, 10, 90)
) |> acoscartesian_to_cartesian()
regression_cone_ramsay(x) # expect: c(0.856, -0.157, -0.492, NA, 1.56207)
regression_plane_ramsay(x) # expect: c(0.852, -0.154, -0.502, 1-1.002)
} # }