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Abstract This study presents the first rigorous statistical analysis of the present‐day crustal stress along the
western margin of the North American Plate, covering the entire Canadian Cordillera and Alaska. Using circular
statistics and geometric tests, we develop a regional stress province model that constrains the directions of first‐
order stresses. Observed stresses from theWorld Stress Map database and other published sources are compared
with modeled directions derived from plate boundary stresses, mantle drag, and gravitation‐induced body
forces. Our results show that plate boundary forces dominate the stress field, particularly those associated with
the convergent and transform boundaries between the Pacific/Yakutat and North American plates. Local stress
modifications are caused by slip partitioning related to oblique plate boundary geometries. Active regions at the
northeastern edge of the Cordillera coincide with the superposition of stresses from both the Pacific–North
American transform boundary and the Arctic/North Atlantic ridge push. Despite their large distance from active
plate boundaries, the alignment of stress trajectories in the Richardson Mountains and Mackenzie Mountains
results in stress amplification and eventually deformation. Conversely, misalignment and hence stress reduction
explains the seismic quiescence in the Canadian Rocky Mountains. Thereby, the lithospheric‐scale structural
inheritance along the Tintina Fault and the northern Rocky Mountain Trench acts a major deflector of far‐field
stresses. Second‐order drivers, notably gravitation‐induced body forces, further modify stress fields,
particularly along the northern slope of the Brooks Range and within the North American foreland of the
Cascadia subduction zone.

Plain Language Summary The Earth's crust is shaped by geological forces, known as stresses,
which control how the ground moves, shakes or rises to form mountains. We analyze the stresses that act along
the western edge of the North American Plate, covering the Canadian Cordillera and Alaska. By combining data
from many sources and using new statistical methods, we develop a large‐scale model to understand how stress
is distributed across such a vast region. Our findings show that most stresses derive from forces generated at the
boundaries of plates by their movements, particularly where the Pacific plate collides with North America. The
geometry of these boundaries and gravity create local changes of the stresses. Even areas far from these
boundaries, such as the Richardson and Mackenzie Mountains, are still strongly affected when boundary
stresses from the Pacific and the distant Arctic edge of North America combine. By contrast, where stresses
cancel each other out, such as in parts of the Canadian Rockies, the crust is relatively quiet. We also discovered
that some deep faults in the Cordillera's crust redirect stress over long distances. Together, these findings help to
explain why some regions experience frequent earthquakes and mountain building while others do not.

1. Introduction
What drives deformation in the Cordilleran orogen? The Aleutian‐Alaska‐Canadian Cordillera is the result of
subduction, terrane accretion, and transform motion that started more than 200 Myr ago and is still active today
(Figure 1). Currently, this diffuse plate boundary zone is characterized by widespread active deformation and high
topography reaching >800 km inboard of the active Pacific plate boundary over a generally thin and hot litho-
sphere (Hyndman & Currie, 2011). Seismicity occurs primarily along the active plate boundaries at the western
margin of North America and extends far into the continental interior in Alaska, northern Canada and contiguous
US, but not in southern Canada (Figure 1). A striking feature is the existence of large areas lacking notable
seismicity (i.e., magnitudes below 4), such as between the eastern Denali and the Tintina faults in the Yukon
(Figure 1). The seismic pattern indicates shortening on both sides of these seismic gaps, raising questions on how
plate boundary stresses are transmitted through the lithosphere and how they interplay with other major forces.
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Understanding the kinematics within this diffuse plate boundary zone requires knowledge of the relative
contribution of the deformation driving forces at both large and small scales. There is no doubt that deformation is
primarily driven by boundary forces associated with plate motion (Elliott & Freymueller, 2020; Elliott

Figure 1. Tectonic map of Alaska and the Canadian Cordillera. (a) Crustal seismicity since 1970 showing epicenters for
earthquakes between 5 and 40 km depth and magnitude Mw > 4 (compiled from ANSS catalog, Guy et al., 2016). Gray
arrows depict the vectors of absolute motion (HS3‐NUVEL, Gripp & Gordon, 2002). Elevation data are based on the ETOPO1
model (NOAA National Geophysical Data Center, 2009). HG—Haida Gwaii. (b) Structures and observed stress field. Colored
bars give orientation of the maximum horizontal stress σHmax and the stress regime compiled from the World Stress Map
Database Release 2025 and other sources (see text for details). Gray bars show the smoothed stress field. Bold black and gray
lines are major faults and cratonic shear zones, respectively. BeF—Bering Fault, BRF—Border Ranges Fault, CT—Cascadia
Megathrust, CEFT—Chugach‐St. Elias Fold‐and‐Thrust Belt, FF—Fairweather Fault, FRF—Fraser River Fault, GASZ—Gulf
of Alaska Shear Zone, QCF—Queen Charlotte Fault, RMT—Rocky Mountain Trench (N—Northern, S—Southern), TF—
Transition Fault.
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et al., 2010, 2013; Enkelmann et al., 2017; Finzel et al., 2014; Mazzotti & Hyndman, 2002; McKay et al., 2021;
Richardson & Reding, 1991; Wdowinski, 1998; Zoback, 1992b), buoyancy/body forces (Finzel et al., 2014;
Mazzotti & Hyndman, 2002), and traction at the base of the lithosphere due to mantle drag (Bokelmann, 2002;
Bolton et al., 2021; Finzel et al., 2011, 2014; Forte et al., 2010; Gough, 1984; McConeghy et al., 2022; Schutt
et al., 2023). However, none of these mechanisms alone is sufficient to drive all of the deformation observed in the
area (Heidbach et al., 2007). Quantifying their individual contributions to the stress (tensor) field is challenging
and their relative roles in influencing the deformation field remain largely speculative. Each of these drivers
implies a characteristic orientation of the resulting deviatoric stresses, which can be compared with the observed
stress field inferred from earthquake focal mechanisms (Arnold & Townend, 2007; Gephart & Forsyth, 1984;
Townend et al., 2012), seismic anisotropy (Savage et al., 2016), or borehole breakout data (Zoback &
Mooney, 2003). However, the present‐day stress fields of the entire orogen have only been studied at local scales,
such as in Alaska (Estabrook & Jacob, 1991; Ruppert, 2008), the Mackenzie Mountains (Gough et al., 1983), the
northern slope of the Brooks Range (Dixit et al., 2017), the Alberta foreland basin (Bell & Gough, 1979; Gough &
Bell, 1981; Reiter et al., 2014), the Queen Charlotte Fault (Ristau et al., 2007), and the Cascadia subduction zone
(Balfour et al., 2011).

We take a large‐scale approach to quantify the individual stress field contributions of plate boundary forces,
gravitational potential energy (GPE) variations within the lithosphere (buoyancy forces), and basal tractions by
comparing modeled stress trajectories with a compilation of the observed crustal stress field. This scale of
analysis requires accounting for the spherical geometry of stress fields. Using a novel statistical technique for
spherical stress data proposed byWdowinski (1998) and recently improved by Stephan et al. (2023), wemodel the
direction of the plate boundary stresses from relative plate motion, estimate the GPE variations using topography
and crustal densities, and infer the direction of basal tractions from the seismic anisotropy in the upper mantle.
This study therefore represents the first large‐scale, quantitative statistical analysis for the region, directly
comparing the orientation of observed stress with modeled first‐order stresses from these potential driving forces
to evaluate their spatially resolved relative contributions to the crustal stress field. The presence of multiple stress
provinces and tectonic interactions makes region ideal for studying the complexities of stress partitioning and
deformation.

2. Tectonic Background
Present day seismic activity is mainly concentrated along the active plate boundaries along the western margin of
North America. Alaska is primarily affected by the subduction of the Pacific plate beneath the North American
plate, both of which converge at the Aleutian plate boundary at rates between 56 and 79 mm yr− 1 (Global Strain
Rate Model, GSRM, v2.1; Kreemer et al., 2014). The northward‐moving Yakutat microplate (64–72 mm yr− 1,
Elliott et al., 2010), a buoyant and overthickenned oceanic plateau (Christeson et al., 2010), causes flat‐slab
subduction beneath south‐central Alaska and seismicity reaching far north of the Denali Fault (Figure 1). In
coastal southeast Alaska and southwest Yukon, the Yakutat collision causes very rapid rock exhumation rates
(Enkelmann et al., 2009, 2015) that is interpreted to related to transpression (Freymueller et al., 2008; Haeuss-
ler, 2008). The Yakutat/North American plate boundary transitions from the transpressional Fairweather
Transform to the south to the St. Elias Fold‐and‐Thrust Belt to the north—a distributed contractional zone
extending from southwestern Yukon to the Copper River. The geodetic velocity field indicates westward and
eastward rotation of the surface motions away from the Yakutat collision zone (i.e., Chugach–Saint Elias
Mountains). These displacements of fault‐bounded fragments of the North American lithosphere are interpreted
as lateral escape movements away from the major collision zone, producing margin‐parallel motion along the
Aleutian Arc and the Queen Charlotte Fault to the west and the east of the collisional zone, respectively (Elliott &
Freymueller, 2020; Elliott et al., 2010, 2013). Recent earthquake relocations in southwest Yukon reveal a corridor
of clockwise‐rotating blocks situated between the eastern Denali Fault and the Connector Fault, that connects the
Fairweather Transform with the Totshunda and central Denali Fault across the St. Elias Mountains (Biegel
et al., 2024). Seismicity along the eastern Denali Fault is generally sparse; instead compression is accommodated
by regional thrusts that crosscut the eastern Denali Fault.

Farther south, seismicity is mostly concentrated offshore along the dextral transpressive Queen Charlotte
Transform, which accommodates motion between the Pacific and North American plates. Here, seismicity
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reaches magnitudes of up to 8.1 (Haida Gwaii 1949, Hyndman, 2015). In the southern Canadian Cordillera,
deformation is instead attributed to the subduction of the Juan de Fuca Plate beneath North America. Along the
Cascadia Trench, convergence reaches rates up to 38–50 mm yr− 1 (Figure 1) and is perpendicular in the north and
oblique (45°) along the southern segments of the Cascadia Trench (Figure 2). Geodetic evidence indicate that the
plate boundary is currently locked, causing elastic strain to build up in overriding North American Plate
(McCaffrey et al., 2000). GPS data further show that crustal fragments of North America move northward and
trench‐parallel at rates of 23–28 mm yr− 1 with respect to the stable plate's interior (McCaffrey et al., 2013),
suggesting fragmentation of the plate into several tectonic blocks such as the Oregon Coastal Block and the
Sierran Block (Lewis et al., 2003; Unruh &Humphrey, 2017;Wells et al., 1998). This fragmentation is interpreted
to be driven by Basin‐and‐Range extension in the southeast and the oblique convergence at the Cascadia Trench
(Humphreys & Hemphill‐Haley, 1996).

Far‐field seismicity also occurs inboard of the active plate boundaries, particularly in the north, along the northern
slope of the Brooks Range, the Richardson Mountains, and the Mackenzie Mountains (Figure 1a). The largest
event recorded in these regions is the 1985 Mw 6.9 earthquake in the Mackenzie Mountains. GPS data indicate a
general NE directed surface motion (Leonard et al., 2007). In contrast, the Rocky Mountains farther south are
seismically inactive today. Borehole breakouts from the Alberta Basin, within the eastern foreland of the Rocky
Mountains, reveal a present‐day NE–SW compressional stress field, orientated approximately perpendicular to
the mountain belt (Reiter et al., 2014).

3. Data and Analysis
We compiled present‐day stress data (n = 5452, Figure 1b) from the World Stress Map database (Heidbach
et al., 2025) and literature (Balfour et al., 2011; Levandowski et al., 2018; Lund Snee & Zoback, 2020). The
compilation includes only A–D quality ranked data, that is, data with an azimuth accuracy of <40°
(Zoback, 1992a). Lateral limits of the stress subset and the investigated area are the westernmost Aleutians and the
southernmost extent of the Juan de Fuca plate. For statistical comparisons to other fields, the measured stress
orientations are quality‐weighted by the reciprocal of the reported standard deviation of the azimuths.

We compare the orientation of the compiled, observed stress field (Figure 1b) with those of the fields of potential
stress sources including (a) plate boundary forces (Figure 3), (b) the upper mantle drag at the base of the lith-
osphere (Figure S2a in Supporting Information S1), (c) body forces induced by gravitation (Figure S2b in
Supporting Information S1), and the (d) the surface deformation (Figure S2c in Supporting Information S1).

Figure 2. Plate‐boundary obliquity, that is, the angle between the relative plate motion (GSRM v2.1, Table 1) and the strike of
the plate boundary (Bird, 2003). Slip partitioning, or distributed transpression or transtension are expected at oblique plate
boundaries.
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Additionally, we investigate the influence of the Yakutat microplate and the Oregon Coastal Block on the stress
fields as shown in detail in Supporting Information S1 (Text S6). Data and modeling procedure are described
below, while details for the modeled direction of basal drag are given in Text S5 in Supporting Information S1.

The diffuse plate boundary zone involves four neighboring plates (i.e., North America, Pacific Plate, Juan de Fuca
Plate, and Eurasia) with six different plate boundary segments (Figure 3). To analyze their effects, we first
subdivide the study area into subsets of different stress fields based on the lateral misfit of the modeled plate
boundary stresses. These stress provinces are then compared with modeled fields of other potential sources to
evaluate their local contribution to deformation.

For a statistical evaluation (e.g., variance and mean) and comparison of stress fields, orientation data must be
transformed in a common reference frame. The commonly used geographical reference frame, where orientations
are measured as deviations from geographic North, is unsuitable for such statistical treatment because the angles
are distorted by Earth's spherical geometry (Stephan et al., 2023). Since plate boundary forces are the dominant
source for the first‐order stress field (Heidbach et al., 2007; Zoback et al., 1989), their stress trajectories provide
an ideal reference frame for stress field analysis (see details below). All transformed stress and strain fields are
then interpolated onto a common 1 × 1° grid spanning the study area as shown in Figure 1. The interpolation uses
an inverse distance‐weighting method, described in Text S2 (Supporting Information S1). The goodness‐of‐fit of
stress models is quantified using circular statistical metrics, such as the angular distance and the circular
dispersion (see Text S1 in Supporting Information S1 for mathematical formulations). Residuals between
modeled and observed stress orientations, that is, the angular distances, are interpreted as stress anomalies, that is,
regions where the observed stress field deviates that expected from a tectonic force. Details on data sources and
analytics are provided below.

Figure 3. (a–f) Kernel dispersion showing regional deviations of the orientation of plate boundary stresses from the observed
maximum horizontal stress directions (σHmax) . Blue and red colors indicate a good‐fit or systematic misfit between the two
directions, respectively. Red lines show the tested plate boundary. Adaptive kernel half‐widths range between 100 and 50 km.
Figure in center shows stress province model with labels referring to best‐fit areas determined by the kernel dispersion shown
subfigures (a–f). For description of abbreviated relative plate motions and statistical summaries see Table 2.
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3.1. Directions of Plate Boundary Stresses

To model the directions of these plate boundary stresses (σPB) , we use the methodology by Wdowinski (1998),
that has been recently updated by Stephan et al. (2023). The method uses the empirical link between the direction
of relative plate motion and the first‐order orientation of the maximum horizontal stress (σHmax) adjacent to the
plate boundary. The first‐order direction of σHmax is parallel to the orientation of lateral plate boundary stresses
(Heidbach et al., 2007), which are at a specified angle to trajectories of the relative motion of neighboring plates
(Forsyth & Uyeda, 1975). According to the empirical model by Wdowinski (1998), the angle depends on the
direction of displacement of the plate boundary, that is, σHmax is parallel, perpendicular, or±45° to the direction of
relative plate motion at a plate boundary that is displaced inward (convergent plate boundaries and ridge‐push),
outward (divergent plate boundary), or tangential (transform boundary), respectively (Figure 1b).

The predicted orientations of tested plate boundary stresses for each datapoint are obtained by transforming the
coordinates and the azimuth of the stress field into a coordinate reference frame of the relative plate motion in
which coordinates and azimuths are measured from the pole of rotation as the coordinate origin (Stephan
et al., 2023; Wdowinski, 1998). This plate boundary stress reference frame then allows us to statistically compare
the directions of plate boundary stresses with the observed directions of σHmax. A statistically significant cor-
relation between the (transformed) σH́max and the modeled direction of lateral plate boundary stresses σPB (i.e.,
direction of σṔB is 0° for outward, 45° for left‐lateral tangential, 90° for inward, and 135° for right‐lateral
tangential displacement) exists when the σH́max orientations are normally distributed around the orientation of σṔB.

The required plate motion parameters to model the direction of σPB and transform the direction of σHmax are
derived from the GSRM v2.1 model (Kreemer et al., 2014). Block motions of Yakutat and the Oregon Coastal
Block are derived from Elliott et al. (2010) andMcCaffrey et al. (2007), respectively.We chose these plate motion
models because they incorporate only GPS/GNSS‐derived velocities and no earthquake slip. Thereby, we avoid
circularity when comparing plate motion to stress field data that are partially derived from earthquake slip
inversion. To obtain the relative motions, we converted all rotations into rotations relative to the North American
and Pacific plates using transformation as described in Schaeben et al. (2021, 2024). The relative plate motion
parameters are given in Table 1. For statistical comparisons, the modeled directions are weighted by the inverse of
the potential error of the pole of rotation, which is proportional to the distance of the pole to the stress data
(Stephan et al., 2023). These errors are listed in Table 2.

3.2. Direction of Gravitation‐Induced Body Forces

To explore the effect of gravitation, we calculate the GPE from the topography and the crustal structure and derive
the magnitudes and orientation of the gravitational deviatoric stresses based on the method by Flesch et al. (2001).
Moho depth and crustal densities are derived from CRUST1.0 model (Laske et al., 2012), and the topography is

Table 1
Parameters for Considered Relative Plate Motions

Moving plate/block Lat. (°N) Lon. (°E) Rate (°Myr− 1) Source

with respect to North America (na)

Eurasia (eu) 70.73 121.11 0.227 calc. from GSRM 2.1

Juan de Fuca (jf) 32.28 − 112.74 − 1.133 calc. from GSRM 2.1

Oregon Coastal Block (ocb) 45.16 − 190.01 − 1.019 McCaffrey et al. (2007)

Pacific (pa) 49.33 − 76.13 − 0.791 GSRM 2.1

Yakutat (yk) 59.47 − 87.82 − 1.04 Elliott et al. (2010)

with respect to Pacific

Juan de Fuca − 0.73 97.50 0.625 calc. from jf‐na and pa‐na

Yakutat − 70.38 14.68 − 0.315 yk‐na and pa‐na

with respect to Oregon Coastal Block

Juan de Fuca 24.81 84.60 0.28 calc. from ocb‐na and jf‐na

Note. Rate is positive for counterclockwise rotation.
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from the ETOPO1model (NOAANational Geophysical Data Center, 2009). Because GPE distribution calculated
for a lithosphere not fully compensated would produce the same overall pattern of deviatoric stress (Finzel
et al., 2014; Flesch &Kreemer, 2010), we calculate the estimates of GPE distributions to a depth of 100 km for the
area and model the direction of the maximum horizontal stress induced by gravitation (i.e., the horizontal gradient
of GPE field) within the 1 × 1° grid as used for the plate boundary stresses. For the GPE estimate, we assume a
constant mantle density at Moho depths of 3.32 g cm− 3 (the mean mantle density of the CRUST1.0 model for the
investigated area). The calculations are performed using the MATLAB program “stress-modelling”
(Hirschberg et al., 2019). The magnitudes of the modeled GPE stresses are used as weighting coefficients for
statistical estimations and comparisons.

3.3. Direction of Horizontal Principal Strain Axes

For a first‐order approximation of the surface deformation, we use the horizontal strain rate tensor field that is
deduced from surface GNSS velocities. Geodetic strain rates and the orientations of the horizontal principal strain
axes are derived from GSRM v2.1 (Kreemer et al., 2014). To allow the comparison with other fields, we
downscaled the data sets's original 0.3 × 0.3° resolution to a 1 × 1° resolution that is the same grid as used for the
plate boundary stresses. The downscaling has been done by averaging the geodetic horizontal shortening di-
rections ( ė3) using the spatial interpolation algorithm as described in Supporting Information S1. The geodetic
velocity is used as weighting coefficient for statistical estimations and tests.

3.4. Statistical Measure of Misfit

To evaluate the misfit between the directions of the observed and the modeled stress fields (plate boundary
stresses, stresses generated by the horizontal gradient of gravitation‐induced body forces, and stresses resulting
from basal tractions), we use the circular dispersion (D). This criterion measures the sample‐size normalized
spread of directions around a specified orientation with values ranging from 0 to 1. Low values (D< 0.25) indicate
a statistical alignment whereas large values (D> 0.4) represent a systematic misfit. The mathematical formula-
tions of the (weighted) circular dispersion is given in Text S1 in Supporting Information S1.

Table 2
Statistical Parameters and Test Results for the Stress Provinces

Stress province Plate boundarya
Observed azimuth

Predicted azimuth ( ° )b Dispersionc,d Rayleigh testen Variancec Quasi‐median ( ° )c Mean ( ° )c 95% CI ( ° )

Eurasia wrt. North America (eu‐na)

(A) inward 665 0.32 71 72 63–83 90 ± 1 0.23 ± 0.02 20.03 (1e− 87)

Juan de Fuca wrt. North America (jf‐na)

(B) inward 1662 0.47 44 57 35–52 90 ± 1 0.51 ± 0.02 − 1.32 (0.91)

tan (L) 45 ± 1 0.23 ± 0.02 30.69 (2e− 204)

tan (R) 135 ± 1 0.77 ± 0.02 − 30.69 (1)

Juan de Fuca wrt. Pacific (jf‐pa)

(C) outward 132 0.16 155 160 148–171 180 ± 1 0.19 ± 0.01 10.29 (3e− 24)

(D) tan (R) 97 0.17 116 118 104–132 135 ± 1 0.16 ± 0.03 9.47 (9e− 21)

North America wrt. Pacific (na‐pa)

(E) inward 1869 0.48 96 92 86–199 90 ± 1 0.25 ± 0.01 31.76 (5e− 219)

(F1‐2) tan (R) 609 0.33 124 126 118–134 135 ± 1 0.18 ± 0.02 22.35 (2e− 108)

Note. Azimuths are given in transformed orientations with respect to the pole of rotation. Note that stress province (B) is tested against three different plate boundaries.
Location of stress provinces shown in Figure 3. See Text S1 in Supporting Information S1 for details on statistics of angular data. CI—confidence interval, n—number of
data. aTangential (tan) plate boundaries are either right (R) or left (L) lateral. bAzimuth ± standard error. Error is estimated from Stephan et al. (2023), Equation 18.
cWeighted by reciprocal of reported uncertainties. Quasi‐Median (on the circle) after Ratanaruamkarn et al. (2009). dCircular dispersion± standard deviation (bootstrap
estimate of 1000 resamples). Values range from 0 (statistical fit) to 1 (systematic misfit). Weighted by reciprocal of reported uncertainties. eStatistical test for circular
uniform distribution with specified mean direction (i.e., predicted azimuth): test statistic (p‐value). The Null Hypothesis is rejected if the test statistic is ≥ p‐value.
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Because the study area contains multiple plate boundaries (Figure 1) with different displacement types, (i.e.,
different predicted azimuths of plate boundary stresses), we use statistical parameters to divide the study area into
stress provinces that delineate areas of uniform stress fields relative to a predicted direction of plate boundary
stresses. A stress province must meet the following criteria: (a) small circular dispersion (D≤ 0.25, i.e., “average”
deviation ≤30°), (b) the direction of σṔB is captured by the estimated confidence interval of the direction of σHmax,
(c) the direction of σHmax is circular uniformly distributed around the direction of σṔB (using the Rayleigh test, e.
g., Mardia & Jupp, 2000), and (d) the circular variance Var(σHmax), is explained solely by the dispersion around
the predicted σṔB azimuth, that is,D(σH́max,σṔB) ∼ Var(σHmax) . The spatial extent of a province is determined by
the lateral circular dispersion for all predicted azimuths resulting from neighboring plate boundaries (Figure 3).
This kernel dispersion calculates the inverse‐distance and quality weighted dispersion within a specified radius
(see Text S3 in Supporting Information S1 for details).

4. Results and Discussion
4.1. First‐Order Driver of Deformation in the Cordillera

Our geometric and statistical analysis of the stress field of the Canadian Cordillera and Alaska reveals seven
distinct provinces, each of which is dominated by a different plate boundary force (Figure 3, statistical estimators
and test results are presented in Table 2). The analysis corroborates that plate boundary forces are the dominant
primary driver of deformation in the diffuse plate boundary zone of Alaska and the Canadian Cordillera
(Figure 4a). Depending on the orientation of the plate boundary, the stress field is statistically best aligned with
forces resulting from either convergent or transform motion of the Pacific Plate relative to North America. In the
north and the east, the direction of the observed stresses across the Aleutian and the Queen Charlotte Transform
are aligned with expected directions caused by convergence or transform motions, respectively (D = 0.25 for
convergent and D = 0.18 for dextral transform plate boundaries between the North American and the Pacific
plates, Table 2). The analysis also reveals marginally better fits for the stress fields across the convergent and
dextral transform plate boundaries between Yakutat and North America (D = 0.22, and D = 0.11, respectively;

Figure 4. Misfit of tested deformation fields to the observed crustal stress (σHmax). (a) Plate‐boundary forces (represented by
modeled maximum horizontal stress σPB). (b) Surface strain (represented by direction of principal shortening axes ė3).
(c) Mantle anisotropy (represented by slowest directions of seismic anisotropy ϕslow). (d) GPE‐induced maximum horizontal
stress σGPE. Pink dashed lines show the 10 Stress provinces (Figure 3, Table 3).
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details given in Text S6, Table S1, and Figure S5 in Supporting Information S1). Thus, the Yalkutat microplate
only exerts a second‐order influence on a far‐inboard reaching stress field that is primarily controlled by sub-
duction and collision resulting from the Pacific‐North America interactions (Estabrook et al., 1988; Page
et al., 1995).

4.2. Plate Boundary Obliquity and Slip Partitioning

Several plate boundaries are notably oblique with respect to relative plate motion in the study area, in particular
along segments of the Pacific‐North American plate boundary (Figure 2). Such oblique plate boundary geom-
etries give rise to slip partitioning, which is the separation of the oblique slip vector into plate margin normal and
parallel components. This means that, at convergent plate boundaries, slip partitioning results in contraction and,
thus, thrusting with σHmax perpendicular to the plate boundary and localized strike‐slip with σHmax parallel to plate
motion more distant from the boundary. As the stress field is tested against the dominant displacement type of the
plate boundary, slip partitioning produces a significant stress deviation.

4.2.1. Bending of the Aleutian Arc

In the westernmost and easternmost Aleutian Arc, the convergent boundary between the North American and the
Pacific plates becomes parallel to the relative plate motion, thus changing the displacement character to a dextral
and sinistral transform plate boundary, respectively (Figure 2). While the transform tractions source the stress
field in the westernmost Aleutians, southeast Alaska and coastal British Columbia, the oblique segments between
the convergent and transform boundaries cause the slip to partition into thrust and strike‐slip domains (e.g., Tikoff
& Teyssier, 1994). For example, along the oblique segment of the Western Aleutians, observed stress orientations
slightly deviate from orientations expected for both a convergent and transform boundary (Figures 3e, 3f, and 4a).
Thereby, strike‐slip faulting accommodating transform motions is restricted along a narrow, margin‐parallel fault
zone, namely the Bering Fault Zone (Figure 1; Ekström & Engdahl, 1989; Cross & Freymueller, 2008). Similar to
the Great Sumatran Fault along the oblique Sunda Trench (e.g., Fitch, 1972; McCaffrey, 1992, 1996), the Bering
Fault Zone accommodates the majority of transform motion of the western Aleutian Bend in the upper North
American Plate, where the Pacific Plate subducts obliquely beneath the Aleutian Arc (Figure 2). Furthermore, the
location of active arc volcanism in both areas is spatially restricted to such intra‐arc strike‐slip faults since magma
ascent is favored by transtensional step‐overs along such faults (Bellier & Zoback, 1995; De Saint Blanquat
et al., 1998; Rosenau et al., 2006; Schütt & Whipp, 2020).

4.2.2. Fairweather Fault and Queen Charlotte Transform

The Queen Charlotte Transform accommodates dextral transform motion between the Pacific and North
American plates. Along the oblique boundary between the Yakutat microplate and the North American Plate
(Figure 2), stress orientations deviate from expected plate boundary stress orientations, similar to observations in
the western Aleutians (Figures 3e, 3f, and 4a). In this region, slip in a 100 km wide corridor east of the dextral
Fairweather Fault and its northward extension (Connector Fault) partitions into a network of reverse and strike‐
slip faults that delineate rotating crustal fragments (Biegel et al., 2024). In addition, the historic Yakutat Bay
earthquakes Mw 8.1 and Mw 8.2 in 1899 (not included in the World Stress Map data compilation) record
geological and geomorphological evidence for reverse faulting along the Fairweather Fault in the Yakutat
foothills (Plafker & Thatcher, 2013). In contrast, younger seismic events (e.g., 1958 Mw 7.9 Lituya Bay;
Doser, 2010) are included in our stress compilation and record dominant strike‐slip motion along the Fairweather
(Figure S3 in Supporting Information S1). This indicates the widespread extent of slip‐partitioning along the
Fairweather Fault, but also highlights the inherent time bias in the stress or geodetic strain record, as slip par-
titioning can only be identified when the earthquakes accommodating the different slip components have
occurred.

Most of the observed stress along the Queen Charlotte Transform (North American‐Pacific plate boundary) is
statistically consistent with the predicted trend of stress caused by dextral transform motion (D = 0.18, Table 2).
Minor deviations especially normal and reverse faulting, occur along the more southern parts of the Queen
Charlotte Transform associated with larger magnitude earthquakes (south of Haida Gwaii; Figure 1). Here, the
plate boundary is more oblique (Figure 2) and thus forms restraining and releasing bend causing local trans-
pression and transtension, respectively (Hyndman, 2015). Ristau et al. (2007) argued that large earthquakes along
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the southern Queen Charlotte Transform result from higher shear strength due to the high angle of σHmax to the
fault. However, similar to the Fairweather Fault, large earthquakes (Mw ≥ 7, Figure S3 in Supporting Informa-
tion S1) record different σHmax directions compared to those from smaller earthquakes in close vicinity. Because
such a transient stress rotations also occur in Central Alaska along the Denali Fault (Bemis et al., 2015), the
Brooks Range (Fletcher & Christensen, 1996; Stauder, 1960), and other areas (see review by Hardebeck &
Okada, 2018), it underlines the bias in the stress and strain record in which larger seismic events temporarily
accommodate contrasting slip components especially in oblique settings (Figure S3 in Supporting
Information S1).

4.3. Far‐Field Effect of Arctic/North Atlantic Ridge‐Push

The alignment of the observed stress field with the modeled stresses emanating from the Pacific‐Yakutat plate
boundaries decreases abruptly east of the Kaltag‐Tintina Fault‐Rocky Mountain Trench (Figure 3). Beyond this
structure, the stress orientations in the Eastern Canadian Cordillera and the foreland yield the best statistical fit
with the expected directions of the Arctic/North Atlantic ridge‐push. This interpretation corroborates elastic finite
element modeling, which suggests that the magnitude of the ridge‐push is large enough to transmit stresses across
the entire North American Plate (Richardson & Reding, 1991). In addition, ridge‐push as a driving force for
deformation along the eastern flank of the Cordillera supports low‐temperature thermochronology data from the
Mackenzie and Richardson mountains (Enkelmann et al., 2019; McKay et al., 2021). These studies correlate
phases of intense thrusting and erosion in the Paleogene to Miocene to changes in North America's plate motion
caused by the North Atlantic opening.

4.4. Significance of the Tintina Fault in Cordilleran Stress Field

As plate boundary zones localize strain at the edges of rigid plates, transitions between the dominant stresses
emanating from opposing plate boundaries occur either within or near the inboard edge of the deforming plate
boundary zone. In the Andes for example, collisional and subduction‐related stresses from the Nazca‐South
America plate boundary dominate the western flanks of the Andes, while ridge‐push stresses from the South
Atlantic spreading controls the eastern flanks all the way to the Nubian (West African) plate boundary in the
South Atlantic (Assumpção, 1992; Assumpção et al., 2016; Wdowinski, 1998).

Our stress analysis of the Cordilleran orogen shows that the Tintina Fault and northern Rocky Mountain Trench
marks the boundary of an intraplate stress province in Northern America. This lithospheric‐scale structure co-
incides with the western margin of the North American Craton (e.g., Busby et al., 2023; Estève et al., 2020, 2021;
Gabrielse et al., 2006; Monger & Gibson, 2019; Price & Carmichael, 1986). It separates regions dominated by
stresses emanating from North America's western plate boundaries from those controlled by its eastern boundary.
In contrast, nearby faults that run parallel, including the Denali Fault, do not show a deflection of far‐field
stresses. This suggests that the structural inheritance along the Tintina Fault and the northern Rocky Mountain
Trench has played a major role on shaping both present‐day and past stress fields in the Cordillera, influencing its
evolution since at least the Eocene (e.g., Finley et al., 2025; Padgett et al., 2025).

4.5. Why Are the Mackenzie Mountains Active Today, But Not the Rocky Mountains?

The Canadian Rocky Mountains form the eastern margin of the Canadian Cordillera, stretching >1500 km from
the Yukon–British Columbia border into Montana (Figure 1). Foreland folding and thrusting ceased in the early
Eocene (Pana & van der Pluijm, 2015), and the region is today seismically quiet. In contrast, the >1300 km long
Mackenzie and Richardson mountains—the eastern margin of the Northern Canadian Cordillera—are still
tectonically active (Figure 1a) (Cassidy & Bent, 1993; Leonard et al., 2007; Mazzotti & Hyndman, 2002).
Variations in crustal strength alone do not explain the observed spatial and temporal distribution of strain.

Stress orientation along the strike of the Kaltag‐Tintina Fault and the Rocky Mountain Trench structure indicate
that a change in stress source is either sudden (e.g., for the southern Rocky Mountain Trench, Figures 3a and 3b)
or gradual (e.g., for the northern Rocky Mountains Trench, the Tintina Fault, and the Mackenzie Mountains,
Figures 3a, 3b, 3e, and 3f). Such gradual transitions suggest that multiple stress sources may superimpose and
control the σHmax orientations.
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4.5.1. Superposition of Plate Boundary Stresses

Intraplate deformation occurs when deviatoric stresses are large enough to deform the lithosphere. This can be the
result of an increase in the magnitude of a stress source (force) and/or the superposition of multiple stresses (e.g.,
Heidbach et al., 2007; Zoback, 1992a). Assuming that plate boundary compression is uniaxial (σ2 = σ3 = 0), the
net σHmax resulting from superposition approximates the vector sum of stresses acting on the same body
(Figure 5a). As lithostatic stresses do not influence the direction of σHmax, magnitude and orientation of the
resultant σHmax depend solely on the relative magnitude and the angle between the superimposing plate boundary
stresses. Although it is beyond the scope of our study to infer local stress magnitudes from adjacent plate
boundaries, the total deviatoric stress is largest when the directions of superimposed maximum compressive
stresses align, and smallest when they are perpendicular (Figure 5b).

4.5.2. Implications for the Northern Cordillera

To explore the stress superposition, we overlay the modeled stresses originating from both the western and eastern
plate boundaries of North America (Figure 5). Next, we calculate the intersection isogons, that is, lines of constant
angles between the trajectories of the two plate boundary stresses. The isogons highlight regions where both plate
boundaries stresses align, and thus, where the overall deviatoric stress is increased (yellow shaded area in

Figure 5. (a) Link between the far‐field seismicity and the angles between stresses generated by Arctic/North Atlantic ridge‐
push and transform tractions emanating from the Pacific plate boundary. Isogons are lines of constant angles (expressed by
the angular distance) between the two superimposing stresses. Blue and red bars show the directions of the Pacific and the
Arctic/North Atlantic plate boundary stresses, respectively. Crustal seismicity gives the epicenters for earthquakes between
15 and 40 km depth and Mw > 4 since 1970 (ANSS catalog). (b) Vector parallelogram explaining the geometric relation (in
terms of orientation and magnitude) between two superimposing stresses and their resultant stress. (c) Link between the
magnitude of maximum horizontal stress and the distance to a plate boundary. Graphs show the variations of the resultant
maximum horizontal stress due to both orientation and magnitude of the superimposing plate boundary stresses (not to scale).
See Text S4 in Supporting Information S1 for details.
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Figure 5a). In this region, the amplification of the resultant deviatoric stresses may be large enough to reactivate
existing crustal structures and trigger new deformation. Because this regions coincides with earthquake con-
centrations, a high deviatoric stress due to stress superposition may explain the strong seismicity of thrusting in
northern Alaska, dextral strike‐slip faulting in the Richardson Mountains and thrusting in the Mackenzie
Mountains and Plain (Figure 5a). Farther south in the Cordillera (southern Tintina Fault and Rocky Mountain
Trench), the plate boundary stresses from the western margin of North America are perpendicular to the Arctic/
North Atlantic ridge push, and, thus, the reduced resultant deviatoric stress is insufficient to cause deformation.

In terms of timing, stress superposition is supported by low‐temperature thermochronology revealing that post‐
Cordilleran deformation in the Mackenzie Mountains and Richardson Mountains (40–30 Ma) did not start before
spreading initiated in the Arctic enabling ridge‐push (Enkelmann et al., 2019; McKay et al., 2021). In the southern
Rocky Mountains, thrusting and cooling already ceased prior to the onset of Arctic spreading, as shown by illite
40Ar/39Ar dating of thrust‐fault gouges (76–72 Ma and 54–52 Ma; van der Pluijm et al. (2006); Pana and van der
Pluijm (2015)) and low‐temperature thermochronology (∼60 Ma; Damant et al. (2023)).

4.6. Strain Anomaly in Southern British Columbia and Washington

The seismically active coastal region of southern British Columbia and Washington State (west of the Fraser
River Fault‐Straight Creek Fault, Figure S4 in Supporting Information S1) is expected to be stressed by the
convergence between the Juan de Fuca Plate and the North American plate. In the north, this involves orthogonal
subduction of the Juan de Fuca Plate beneath the North American Plate (Figure 2), while in the south, subduction
becomes highly oblique to the relative plate motion promoting slip partitioning into margin‐normal thrusting and
margin‐parallel dextral strike‐slip within the overriding North American plate. Testing the stress field against the
plate kinematics of North America and the Juan de Fuca plate shows that margin‐normal thrusting dominates at
the northern Cascadia Trench (Figure S4 in Supporting Information S1). Stresses in the hinterland, however, are
trending parallel to the plate boundary—contrary to a dextral strike‐slip stress field expected from relative
motions (Figure S4 in Supporting Information S1). Moreover, oblique stresses in the hinterland are not
accommodated along a single discrete fault, but rather distributed across southern British Columbia and
Washington State, particularly between the Cascadia Trench and the Fraser River Fault and the Yakima Fold‐and‐
Thrust Belt (Figure S4 in Supporting Information S1). Despite the partial alignment with the trend of the active
volcanic arc, the observed stress directions differ notably from those predicted from an oblique subduction zone.
Comparisons with relative motions yield poor fits for:

• Pure convergence between North America and Juan de Fuca: D = 0.51 (Table 2),
• Pure dextral transform displacement between North America and Juan de Fuca: D = 0.77 (Table 2),
• Convergence between Juan de Fuca Plate and the Oregon Coastal Block: D = 0.56 (Table S1 in Supporting

Information S1), and
• Northward push of the Oregon Coastal Block with respect to North America: D = 0.62 (Table S1 in Sup-

porting Information S1).

This shows that the observed stress field is highly oblique to all predicted stress trajectories, desite the fact that the
surface motions of the Oregon Coastal Block are well constrained by geodetic studies (Balfour et al., 2011;
Wang, 2000), Moreover, the high angles between stress trajectories emanating from the Juan de Fuca and Oregon
Coastal Block boundaries would reduce the magnitude of the resulting maximum horizontal stress (see Figure S4
in Supporting Information S1), which is in conflict with the enhanced seismicity recorded in the area (Figure 1).
Gravitational‐induced stresses (D = 0.39, Table 3) and the upper mantle anisotropy (D = 0.33, Table 3) also
show poor alignment, suggesting these sources alone have only a minor influence on the orientation of the stress
field—though a combined effect of block motions, mantle drag and GPE‐induced stresses cannot be excluded by
our method.

Our test reveals that the stress field in southern British Columbia and Washington is best aligned with a stresses
expected for a left‐lateral tangential plate boundary between the Juan de Fuca and North American plates
(D = 0.23, Table 2). Although this suggested displacement is in conflict with the actual displacement between
the two plates, it shows that stresses emanating from the oblique (dextral convergent) plate boundary are
accommodated by sinistral faulting, resulting in plate‐margin‐parallel compression. Such a geometry supports the
model by Wells et al. (2020), in which the clockwise rotation of the Cascadian forearc occurs via minor sinistral
step‐over or antithetic Riedel shear faults progressively rotating between major dextral faults in a domino‐style
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manner. This scenario places the southern Canadian Cordillera within a broader diffuse plate boundary extending
from the Colorado Plateau to the Cascadian margin. Our test results thus support the concept of a large‐scale
transrotational domain or “bookshelf slip” system that accommodates the Pacific–North America shear by
extensional strain in the Basin and Range Province and compression near and parallel the plate boundary
(Atwater, 1970; Darin & Dorsey, 2013; Dickinson, 1996; Luyendyk et al., 1980; Platt & Becker, 2013).

4.7. Second‐Order Drivers of Deformation

Our analysis shows that most deformation in the Cordillera can be explained by plate boundary forces and the
superposition of their generated stresses. The negligible improvements in model fits for the Yakutat microplate
and the significant misfits for the Oregon Coastal Block suggest that smaller plates and blocks exert only minor
(second‐order or less) influence on the overall stresses in the study area, since they are an integral part of the
diffuse plate boundary. Some interior regions can not be explained by boundary forces and represent stress
anomalies as seen in the Columbia Mountains in southeastern British Columbia and the Brooks Range in northern
Alaska (red areas in Figure 4a). Such stress deviations from the trajectories of plate boundary stresses are caused
by second‐order forces, mainly gravitational‐induced body forces, because of the better statistical fits of the
observed stresses with their modeled stress orientation (blue areas in Figures 4c and 4d).

4.7.1. Stress Fields Controlled by Gravitational‐Induced Body Forces

Our analyses show that in both areas the orientation of the maximum horizontal stress is aligned with
gravitational‐induced stresses (Figure 4d). In a compressional orogen, the excess of gravitational potential energy
from crustal overthickenning leads to an increase of vertical stresses eventually exceeding the magnitude of
σHmax. The orientation of σHmax remains aligned with the convergence direction resulting in crustal extension
perpendicular to the convergence direction. This can been seen in the plateaus of Tibet in Central Asia and
Altiplano in the Andes (England & Molnar, 1997; Molnar & Lyon‐Caen, 1988; Molnar et al., 1998; Stephan
et al., 2023). In the Brooks Range normal faulting occurs exclusively with σHmax aligned with the convergence
direction between North America and the Pacific plate (Figure 1b). This gravitational collapse with extension
perpendicular to the convergence direction is supported by the direction of the principal stretching axes derived
from geodetic motions (Figure S2c in Supporting Information S1).

In southeastern British Columbia and Washington state, east of the Fraser River Fault‐Straight Creek Fault, the
transition from transpressive to transtensive stresses implies an increase of vertical stresses, particularly between
the Fraser River Fault and the southern Rocky Mountain Trench. Present‐day normal faulting has not been re-
ported indicating that vertical stresses do not exceed the magnitude of horizontal stresses. However, the exten-
sional component of the area is supported by low‐temperature thermochronology that records Oligocene and
Miocene cooling due to reactivation of normal faults (Damant et al., 2023; Fraser et al., 2021). The oblique nature

Table 3
Dispersion of Modeled Stress Directions From Observed Direction of Maximum Horizontal Stress (σHmax)

Stress province D(σHmax,σPB) D(σHmax, ė3) D(σHmax,ϕslow) D(σHmax,σGPE)

(A) Mid‐Plate (east of Rocky Mountain Trench) 0.23 ± 0.02 0.23 ± 0.02 0.61 ± 0.02 0.36 ± 0.02

(B) Southern British Columbia and Washington (Cascadia Megathrust to Rocky Mountain
Trench)

0.23 ± 0.02 0.56 ± 0.05 0.33 ± 0.03 0.39 ± 0.07

(C) Pacific Ocean west of Juan de Fuca Ridge 0.19 ± 0.02 0.09 ± 0.04 0.32 ± 0.07 0.65 ± 0.06

(D) Juan de Fuca Plate 0.16 ± 0.03 0.15 ± 0.16 0.37 ± 0.10 0.80 ± 0.12

(E) Aleutian Arc, Bering Sea, Chukotka, and Alaska 0.25 ± 0.01 0.50 ± 0.03 0.33 ± 0.03 0.44 ± 0.02

(F1) western Aleutian Arc and (F2) Coastal Range (east of Queen Charlotte Fault) and SW
Yukon (Fair weather Fault Zone to Tintina Fault)

0.18 ± 0.02 0.18 ± 0.02 0.40 ± 0.04 0.67 ± 0.04

Total 0.32 0.36 0.36 0.33

Note. Location of stress provinces shown in Figure 3. D—Dispersion, ė3—azimuth of horizontal surface shortening, σGPE—stress deduced from gravitational potential
energy per volume unit, σPB—azimuth of plate boundary force, ϕslow—azimuth of slow direction of seismic anisotropy. Standard deviation of the circular dispersion is a
bootstrap estimate of 1,000 resamplings. Dispersion from plate boundary forces are the results shown in Table 2.
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of the faulting regime indicates a deviation from Andersonian style of faulting, likely caused by the reactivation of
non‐ideally oriented faults, enhanced by high pore‐fluid pressure and/or low frictional strength (Anderson, 1905;
Byerlee, 1978). Our test reveals that stresses in the southwestern Canadian Cordillera may be superimposed by
Basin‐and‐Range tectonics generating E‐W trending σhmin (N‐S trending σHmax) parallel to the Basin‐and‐Range
extension (Parsons et al., 1998; Puskas & Smith, 2009; Waite & Smith, 2004). Nevertheless, the area encom-
passes Eocene metamorphic core complexes (Armstrong, 1982; Coney & Harms, 1984), with N–S trending
lithospheric‐scale mechanical anisotropies. Such features suggest that the region exhibits rheological weaknesses
that are subjected to prolonged crustal extension due to ongoing gravitational collapse (Lee Armstrong &
Ward, 1991). The diffuse extension (see modeled gravitational‐induced σHmax in Figure S2b in Supporting In-
formation S1) may cause the oblique reactivation of NNW–SSE striking structures such as the Columbia River
Fault (Figure S4 in Supporting Information S1) and, thus, the deflection of plate boundary stresses (Damant
et al., 2023; Finley et al., 2022). As a potential additional driver, the dynamics of the upper mantle beneath the
Yellowstone volcanic field (Wyoming) appear to exert only a local and transient influence on stress orientation,
since post‐seismic relaxation has caused only minor perturbations to the Basin‐and‐Range‐dominated stress field
(Waite & Smith, 2004).

4.7.2. Stress Fields Controlled by Mantle Drag

There is no clear evidence that the stress field in the Cordillera is significantly controlled by mantle‐flow induced
basal tractions (Text S5 in Supporting Information S1) because plate boundary stresses and gravitational stresses
exhibit statistically better fits with the orientation of the observed stress field. Nevertheless, the effect of mantle
drag on the crustal stress field cannot be excluded since weak alignment of observed stresses with the slow‐
direction of seismic anisotropies (D = 0.36, Table 3) may also indicate minor contributions to in situ stresses
(more details in Text S5 in Supporting Information S1).

5. Conclusions
Our geometric test supports that plate boundary forces control most of the observed stress field in the Canadian
Cordillera and Alaska. Seven stress provinces reveal a mosaic of compressional, extensional, and strike‐slip
regimes that result from interactions among the major plates (Figure 6). The complexity of the Cordilleran
stress field arises from superposition of multiple plate boundary stresses and the geometry of the plate margins:

• The eastern and northern edge of the Canadian Cordillera and Alaska, respectively, are dominated by the far‐
field Arctic/North Atlantic ridge push. The Kaltag‐Tintina Fault–Rocky Mountain Trench marks the sharp
transition from Pacific to Arctic/North Atlantic stress sources (Figure 6). This intracontinental stress province
boundary coincides with the western margin of the Laurentian craton, suggesting this lithospheric‐scale
structural inheritance significantly controls Cordilleran deformation by deflecting far‐field stresses.

• Stress superposition explains regional differences in seismicity in the far‐field areas (Figure 5). Aligned plate
boundary stresses amplify local deviatoric stress, promoting tectonic deformation (e.g., Mackenzie Moun-
tains), while oblique plate boundary stresses reduce deviatoric stress and suppress deformation (e.g., southern
Rocky Mountains), despite similar distances (>800 km) from the Pacific plate boundary.

• Discrete slip partitioning (Figure 2) affect stress fields along the oblique segments of the western Aleutians arc
and the Queen Charlotte Transform (green area in Figure 6). In contrast, along the oblique Juan de Fuca‐North
American plate boundary, diffuse, bookshelf‐style sinistral faulting between dextral major faults results in
margin‐parallel compression.

• Smaller plates (e.g., the Yakutat microplate) and blocks (e.g., the Oregon Coastal Block) exert only limited
control on the overall stresses.

• Second‐order forces, such as gravitational collapse, mainly control the stress fields in the Brooks Range and
southeastern British Columbia (pink area in Figure 6). There is no conclusive evidence that mantle drag
significantly influences the orientation of the present‐day stress field (Figure 4c).

Our approach helps to identify regions needing further research where observed stresses deviate from stress
predictions (i.e., stress anomalies). A lithospheric‐scale approach considering all possible plate interactions and
their variable characters due to spherical geometry, is essential to understand crustal stresses, especially in
inboard regions where forces are generally weaker and structural inheritance becomes more dominant. The
findings highlight the importance of plate boundary geometry and stress superposition in the orogenic evolution
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over long time scales. As continents grow, for example, due to terrane accretion, their interior stresses evolve with
changing boundary characteristics, distances, and thus magnitudes and orientation of generated stresses. Addi-
tionally, inherited lithospheric structures direct and localize intracontinental deformation where multiple plate
boundary stresses align. Our method enables paleostress predictions from plate motion reconstructions, allowing
a framework to integrate structural, magmatic, sedimentary, and metamorphic data to better understand the
tectonic evolution of the Cordillera.

Data Availability Statement
All of the original data in this paper originate from previously published sources. The crustal stress data are from
World Stress Map database (Heidbach et al., 2025) and various sources described in the section “Data and
Analysis.” The geodetic strain data are derived from Kreemer et al. (2014) and references therein. Moho depth
and crustal densities are derived from CRUST1.0 model (Laske et al., 2012), and the topography is from the
ETOPO1 model (NOAA National Geophysical Data Center, 2009). Seismic anisotropy data are compiled from
Wüstefeld et al. (2009) and various sources described in the section “Data and Analysis.” Statistical calculations
and stress modeling were performed using the free and open‐source R package tectonicr (Stephan, 2024).
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