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To be a quantitative and testable tectonic model, plate tectonics requires spher-
ical geometry and spherical kinematics in terms of finite rotations conveniently
parametrized by their angle and axis and described by unit quaternions. In
treatises on “Plate Tectonics” infinitesimal, instantaneous, and finite rotations,
absolute and relative rotations are said to be applied to model the motion of tec-
tonic plates. Even though these terms are strictly defined in mathematics, they
are often casually used in geosciences. Here, their definitions are recalled and
clarified as well as the terms rotation, orientation, and location on the sphere.
For instance, infinitesimal rotations refer to a mathematical limit, when the
angle of rotation tends to zero. Their rules do not apply to finite rotations, no
matter how small their finite angles of rotation are. Mathematical approaches
applying appropriate and feasible assumptions to model spherical motion of tec-
tonic plates over geological times of hundreds of millions of years are derived
including (i) sequences of incremental finite rotations, (ii) sequences of accumu-
lating successive concatenations of finite rotations, and (iii) continuous rotations
in terms of fully transient quaternions. The incremental and the accumulating
approaches provide complementary views. While the relative Euler pole appears
to migrate in the latter, it appears fixed in the former. Path, mean, and instanta-
neous velocity of the migrating Euler pole are derived as well as the angular and
trajectoral velocity of the rotational motion about it. The approaches are illus-
trated by a geological example with actual data and a numerical yet geologically
inspired example with artificial data. The former revisits the three-plate scenario
with stationary axes of two “absolute” rotations implying transient “relative”
rotations about a migrating Euler pole and employs a proper plate-circuit argu-
ment to determine them numerically without resorting to approximations. The
latter applies an involved interplay of incremental and accumulating modeling
inducing split–join cycles to approximate sinusoidal trajectories as reported to
record plates' motion during the Gondwana breakup.
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1 INTRODUCTION

In his afterthoughts of a witness, Le Pichon [1] remembers

The essence of Plate Tectonics, in my opinion, is that it is the first quantitative tectonic model. And it is
impossible to quantify the motion of plates on the Earth using plane geometry. ([1, p. 14])

…
It was recognizing that, without it [spherical geometry, these authors], instantaneous and finite kinematics

on the Earth were doomed. ([1, p. 14])
…
Although, moving from plane to spherical geometry is a very simple step that required no new theory,

it enabled Plate Tectonics to become quantitative and consequently testable. ([1, p. 15])

Up to the present, the groundbreaking treatise “Plate Tectonics” by Le Pichon et al. [2] is a major reference in the field
and provides the introduction here. In their Chapter 4 “Kinematics of relative movements,” the authors take a turn from
“Instantaneous movements” (referring to infinitesimal rotation) to “Kinematics of finite motions” and state:

lt is clear from geology that the plates carrying continents and oceans have moved more than by an infinitely
small amount. Most of the theory developed to treat the problem of present-day tectonics in terms of
instantaneous motions is therefore of no use in attempting to reconstruct the past positions of continents
and oceans.

When confronted with the problem of describing the displacements of plates for long periods of time two
aspects have to be raised. First, it is necessary to use an accurate method to apply large displacements to the
plates on a spherical earth and to know how to apply successive rotations to the plates and how to compose
these rotations. (cf. Le Pichon et al. [2, p. 33])

Here, we present the required accurate method on a spherical (as opposed to a plane) Earth including successive
concatenation of finite rotations in terms of quaternions.

Le Pichon et al. continue:

In practice all workers in the field had to assume that for some finite time interval, the motion between two
plates could be described by a single pole of rotation: …

It is clear from these remarks that the assumption of constant relative motion commonly made in papers
devoted to plate tectonics is a convenient way to escape the geometrical difficulties posed by the evolution
of plates to which finite displacements are applied. (cf. Le Pichon et al. [2, p. 34]).

While this assumption seems actually inevitable if finite motions are modeled applying successive concatenation of
finite rotations, it becomes obsolete when we proceed here to continuous rotations—in terms of quaternions, of course.

As we have stated above, a rigorous method of treating finite rotations is needed to apply large displacements
to the plates. (cf. Le Pichon et al. [2, p. 34]).
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SCHAEBEN ET AL. 3

Their presentation of a “Theory of finite rotations” [2, pp. 34–37] graphically refers to Rodrigues' geometrical construc-
tion to compose finite rotations on the sphere [3] and uses (3 × 3) matrices of SO(3), to conclude eventually that the
quaternion representation of rotations provides a most concise development, compare [2, p. 37], without elaborating on it.

Having the mathematical fundamentals right is the foremost prerequisite for proper, that is, mathematically approvable,
models of the kinematics of plate tectonics and beyond. Here, we set out to present mathematical fundamentals to model
the kinematics of motion of tectonic plates on the sphere featuring both sequences of finite rotations and continuous
rotation in terms of quaternions. Following Le Pichon's approach of search for poles of rotation, computing vectors of
motion along a plate boundary from the vector of rotation, and combination of instantaneous and finite rotations [1, p.
16] enabled for example a numerical model of early Paleozoic plate tectonics including a quantification of the relative
rotation of Gondwana with respect to North America, and the approximation of patterns of sinusoidal trajectories of plate
motion as observed with respect to the Gondwana breakup.

2 ROTATIONS, ORIENTATIONS, AND EULER POLES

A finite rotation R(𝜔, e), conveniently parametrized here in terms of a finite angle 𝜔 ∈ (−𝜋, 𝜋] and an axis of rotation
{+e,−e} provided by a unit vector e ∈ S

2 ⊂ R
3 such that R(𝜔, e) = R(−𝜔,−e), is a mathematical operation, an instanta-

neous transformation, the application of which to an object changes its rotational state, that is, its orientation with respect
to a given reference frame. Largely following the notation and conventions of [4, pp. 4–6], the symbol e casually denotes
both the unit vector and the associated axis. A rotation is defined to be positive (negative) if it is seen counterclockwise
(clockwise) from outside the unit sphere. The rotational axis passes through the center of the unit sphere modeling the
Earth's shape and intersects the sphere at two antipodal points denoted by ±e ∈ S

2, too, which remain invariant by the
rotation R(𝜔, e). The point e ∈ S

2 is referred to as (Euler) pole of the rotation, if the rotation is seen counterclockwise
from it; otherwise, the point −e ∈ S

2 is referred to as (Euler) pole of the rotation. Since usually the upper hemisphere of
the reference sphere is projected onto the unit disk and plotted for purposes of illustration, whichever point appears on
the upper hemisphere is casually referred to as Euler pole in geological applications. The meaning of the common symbol
e—vector, axis, Euler pole—should always be clear from the context.

The rotation of a unit vector, v ∈ S
2, results in a unit vector, R(𝜔, e)v = w ∈ S

2, and the spherical distance dS(v,w) =
arccos(v · w) ≤ 𝜔. Equality holds if and only if v is an element of the great circle with pole e.

Since a rotation is an isometry, the orientation of a spherical polygon, for instance, also appears as its location on the
sphere with respect to a given reference frame.

It should be noted that rotations and orientations can be quantified by the same set of parameters and are described by
the same expression, for example, real unit quaternions q ∈ S

3 ⊂ H, the skew field of Hamiltonian quaternions [5], or
(3 × 3) matrices of SO(3), the special orthogonal group of R3.

2.1 Small angle approximations
Since rotational rates of tectonic plates, that is, angles of rotation in radians per 1 Ma, are small, small angle approxima-
tions of basic trigonometric functions such as

sin𝜔 ≈ 𝜔, cos𝜔 ≈ 1 − 𝜔2

2
≈ 1, tan𝜔 ≈ 𝜔 (1)

are applied whenever convenient. As a rule of thumb, these approximations are considered acceptable if the relative error
is less than 1%, that is, for angles roughly less than 10◦ equal to 0.17 rad. For example, a most prominent application is that
for sufficiently small rotation angles the rotation vector of the concatenation of two rotations is approximately equal to
the sum of the rotation vectors of the rotations being concatenated. It originates from Rodrigues formula of concatenating
rotations [3].

3 MOTION ON THE SPHERE IN TERMS OF ROTATIONS

There are several options to proceed from rotation as (instantaneous) transformation of orientation of an object to motion
in the plane or on the sphere provided by rotation. An initial non-technical exposition is given as follows here. Its detailed
elaboration will be presented later using quaternions because they are most appropriate for the purpose, compare [6].
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4 SCHAEBEN ET AL.

3.1 Sequence of finite rotations
Exploiting the intuition of a rotational motion through time, the trajectories of the vertices of an object, for example, a
spherical polygon, subject to a rotation R(𝜔, e) are arcs of circles along which the orientation of the polygon gradually
changes until the final orientation R(𝜔, e) is reached. Then, a sequence of rotations can be seen to provide two slightly
different simple models of piecewise circular motion on the sphere,

• either a sequence R1,R2, … ,R𝓁 , … of incremental finite rotations R𝓁 ,𝓁 ∈ N,
• or a sequence R1, (R2R1), … , (R𝓁 … R2R1), … of accumulated total rotations by successive concatenations of sequen-

tial finite rotations.

A sequence of incremental finite rotations applied to the corresponding consecutive orientations of a polygon provides
a model of a piecewise circular motion of the polygon. The trajectories of its vertices are joint arcs of circles. If the axes
of the consecutive incremental rotations are the same, then their incremental angles sum up, and the piecewise arcs of
circles join to arcs of unique circles.

Successive concatenations of the finite rotations of a sequence applied to the initial orientation of a polygon at each step
of the successive concatenation result in a sequence of accumulated total rotations providing another model of circular
motion on the sphere. The trajectories of the vertices are arcs of different circles of increasing angular length for each
of the successive concatenations. If the axes are the same for all rotations being concatenated, then the angles of the
concatenated rotations sum up, and trajectories are arcs of unique circles.

To extend these geometric models to include rotational rate, that is, velocity, the rotations are assigned to a strictly
increasing sequence of discrete temporal marks 𝜏0 < 𝜏1 < … < 𝜏𝓁 < … , resulting in a temporally indexed sequence
of rotations closer to the conception of a rotational motion. Given a fixed axis for all rotations, a constant angle of all
rotations and equidistant temporal marks apply to model a rotational motion of constant rate. Otherwise, angles and axes
of the rotations are piecewise constant functions of time with discontinuities at the temporal marks 𝜏𝓁 ,𝓁 = 1, 2, … .

3.2 Continuous rotation
The models in terms of sequences of finite rotations may be generalized by defining angle and axis of rotation as contin-
uous functions of time resulting in a transient rotation R(𝜔(t), e(t)), t ∈ [0,∞); R(𝜔(t0), e(t0)) referring to a given instant
t0 denotes an instantaneous rotation or rather instantaneous orientation, given by its instantaneous angle 𝜔(t0) and axis
e(t0). Then, differential calculus applies and canonically results in a mathematical representation of rotational motion,
including rotational and trajectoral velocity, that is, velocity along the circular path of motion.

3.3 Infinitesimal rotation
Even though the notion of infinitesimal entities, for example, arbitrarily small numbers larger than 0, is apparently appeal-
ing to intuition, it has largely been abandoned in mathematical analysis in favor of the notion of limits, because what
appears appealing leads to a fundamental mathematical problem, compare [7, 8]. Thus, an infinitesimal rotation R(𝛿𝜔, e)
has to be thought of in terms of the mathematical limit for 𝛿𝜔 → 0, compare [4, p. 80]. The first-order approximation
R̃(𝛿𝜔, e)u of the corresponding transformation R(𝛿𝜔, e)u of u ∈ S

2 applies to describe the infinitesimal change of the ori-
entation of an object, here u ∈ S

2. In this way, the notion of infinitesimal rotations gave rise to proceed from a rotation to
an infinitesimal circular motion, in particular to the vector of angular velocity along the unit vector e and to the vector of
trajectoral velocity orthogonal to e and tangential at u to the circular path corresponding to the rotation.

Infinitesimal rotations do not apply to change the orientation of a tectonic plate by a given finite angle of rotation
whatever its fixed (small) size. However, the approximations of Equation (1) apply and prove most useful.

4 ROTATIONS IN TERMS OF QUATERNIONS

The classical reference of this topic is [4], and an easy introduction is [9]. A real unit quaternion q = (q0 + q) ∈ S
3 ⊂ H

of the 3d unit sphere in the 4d skew field H with scalar part q0 ∈ R and vector part q ∈ R
3 may be represented as

q = cos 𝜔
2
+ e sin 𝜔

2
,
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SCHAEBEN ET AL. 5

with an angle𝜔 ∈ (−𝜋, 𝜋] and a unit vector e ∈ S
2 ⊂ R

3. Since q ∈ S
3, its inverse is equal to its conjugate, q−1 = q∗ = q0−q.

The angle 𝜔 and the unit vector e may be associated with a rotation R(𝜔, e) by the angle 𝜔 about the unit vector e, where
the vector 𝜔e = 𝝎 is referred to as rotation vector. To rotate a unit vector u ∈ S

2 by R(𝜔, e) to the unit vector w = R(𝜔, e)u
quaternion multiplication; see Equation (3), from left with q and from right with its conjugate q∗ applies

q ◦ u ◦ q∗ = w, (2)

where u,w are read as pure quaternions, that is, quaternions with vanishing scalar parts. Equation (2) implies that the
quaternions q and −q correspond to the same rotation.

4.1 Rodrigues' rotation formula
Quaternion multiplication of Equation (2) yields Rodrigues' formula for rotations in R

3

R(𝜔, e)u = u cos𝜔 + (e × u) sin𝜔 + e(e · u)(1 − cos𝜔)

= u + (e × u) sin𝜔 + e × (e × u) 2 sin2 𝜔
2

[3] when written explicitly.

4.2 Concatenation of rotations
Concatenation of the two rotations R1 = R(𝜔1, e1) followed by R2 = R(𝜔2, e2) yields the resulting rotation R2R1 = R =
R(𝜔, e) given in terms of quaternions q1 and q2, respectively, by

q = q2 ◦ q1 = q20q10 − q2 · q1 + q10q2 + q20q1 + q2 × q1, (3)

where p · q and p × q represent the standard inner and cross product in R
3, with scalar and vector parts

Sc(q2q1) = q20q10 − q2 · q1,

Vec(q2q1) = q10q2 + q20q1 + q2 × q1.

Thus, angle and axis of the resulting rotation R are provided by

𝜔(R2R1) = 2 arccos
(

q20q10 − q2 · q1
)
,

e(R2R1) =
1

sin 𝜔

2

(
q10q2 + q20q1 + q2 × q1

)
,

or more explicitly in terms of the involved angles and axes

𝜔(R2R1) = 2 arccos
(

cos 𝜔2

2
cos 𝜔1

2
− sin 𝜔2

2
sin 𝜔1

2
e2 · e1

)
, (4)

e(R2R1) =
1

sin 𝜔

2

(
cos 𝜔1

2
sin 𝜔2

2
e2 + cos 𝜔2

2
sin 𝜔1

2
e1 + sin 𝜔2

2
sin 𝜔1

2
(e2 × e1)

)
. (5)

Since the cross product of the axes of rotations is involved in Equation (5) it is obvious that finite rotations do not
generally commute, they commute only if they have a common axis of rotation; then, the angles of rotation just sum up.

If 𝜔2 = ±𝜔1 = ±𝜁 , then

e(R2R1) =
1

sin 𝜔

2

(
sin 𝜁

2
cos 𝜁

2
(e1 ± e2) + sin2 𝜁

2
(±(e2 × e1))

)
. (6)
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6 SCHAEBEN ET AL.

Closely related to the unit quaternion q = cos 𝜔

2
+ sin 𝜔

2
e associated with the rotation R(𝜔, e) is its Rodrigues vector r

defined as
r = tan 𝜔

2
e.

Rephrasing Equations (3)–(5) as

cos 𝜔(R2R1)
2

+ sin 𝜔(R2R1)
2

e =
(

cos 𝜔2

2
cos 𝜔1

2
− sin 𝜔2

2
sin 𝜔1

2
e2 · e1

)
+
(

cos 𝜔1

2
sin 𝜔2

2
e2 + cos 𝜔2

2
sin 𝜔1

2
e1 + sin 𝜔2

2
sin 𝜔1

2
(e2 × e1)

)
and applying the spherical law of cosines

cos 𝜔(R2R1)
2

= cos 𝜔2

2
cos 𝜔1

2
− sin 𝜔2

2
sin 𝜔1

2
e2 · e1,

compare [10, eq. (8.87)] referring to spherical kinematics in terms of quaternions or [11, p. 247] in terms of plain spherical
trigonometry, lead to

tan 𝜔(R2R1)
2

e(R2R1) =
tan 𝜔2

2
e2 + tan 𝜔1

2
e1 + tan 𝜔2

2
tan 𝜔1

2
(e2 × e1)

1 − tan 𝜔2
2

tan 𝜔1
2

e2 · e1

= r2 + r1 + r2 × r1

1 − r2 · r1
,

expressing concatenation in terms of Rodrigues vectors [3]. The three axes e1, e2, e(R2R1) of the rotations R1,R2, (R2R1)
define a spherical triangle, whose interior angles are determined by the angles of these rotations.

For sufficiently small rotation angles, compare Equation (1), the approximation

𝜔(R2R1)e(R2R1) ≈ 𝜔1 e1 + 𝜔2 e2, (7)

in terms of rotation vectors holds. It implies that the normalized sum of the rotation vectors

ê(R2R1) =
𝜔1e1 + 𝜔2e2||𝜔1e1 + 𝜔2e2|| ≈ e(R2R1) (8)

approximates the rotation axis of the concatenation for sufficiently small angles of rotation.

4.3 Spatial references: Absolute and relative rotations
4.3.1 Geometry versus topology
Applying a unique rotation R to two different spherical polygons P1,P2 ∈ S

2 transforms their orientations and changes
their locations on the sphere with respect to a given reference frame, but it preserves their relative location, that is, their
topological relationship. Given two different rotations R𝓁 , 𝓁 = 1, 2, and applying them to the polygons P𝓁 , 𝓁 = 1, 2,
transforms their orientations according to R𝓁P𝓁 = P′

𝓁 , 𝓁 = 1, 2, and changes both their locations with respect to a given
reference frame and their relative location. The rotations R1R−1

2 and its inverse
(

R1R−1
2
)−1 = R2R−1

1 restore the initial
topological relationship of P1 and P2

• in terms of R1P𝓁 , 𝓁 = 1, 2, according to

R1R−1
2 P′

2 = R1R−1
2 R2P2 = R1P2, (9)

with respect to R1P1, and
• in terms of R2P𝓁 , 𝓁 = 1, 2, according to

R2R−1
1 P′

1 = R2R−1
1 R1P1 = R2P1, (10)

with respect to R2P2.
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SCHAEBEN ET AL. 7

4.3.2 Reference frame—point of view: Relative rotation
Equation (9) implies

P′
2 = R2P2 =

(
R2R−1

1
)

R1P2, (11)

featuring the point of view of watching P2 being rotated to P′
2 as provided from P′

1 = R1P1 considered to have been
immobile. Analogously, Equation (10) implies

P′
1 = R1P1 =

(
R1R−1

2
)

R2P1, (12)

featuring the point of view of watching P1 being rotated to P′
1 as provided from P′

2 = R2P2 considered to have been
immobile, cf. Figure 1. The rotation R1R−1

2 is casually referred to as relative rotation R12 of the polygon P1 with respect to
the point of view from polygon P2, that is, with respect to the reference frame provided by the polygon P2.

The angle 𝜔
(

R1R−1
2
)

and axis e
(

R1R−1
2
)

of the relative rotation R = R1R−1
2 are given by virtue of Equations (4)

and (5) as

𝜔
(

R1R−1
2
)
= 2 arccos

(
cos 𝜔1

2
cos 𝜔2

2
+ sin 𝜔1

2
sin 𝜔2

2
e1 · e2

)
, (13)

e
(

R1R−1
2
)
= 1

sin 𝜔(R1R−1
2 )

2

(
cos 𝜔2

2
sin 𝜔1

2
e1 − cos 𝜔1

2
sin 𝜔2

2
e2 − sin 𝜔1

2
sin 𝜔2

2
e1 × e2

)
. (14)

Only if the two angles of rotation are absolutely equal, that is, 𝜔2 = ±𝜔1 = ±𝜁 , then with Equation (6)

𝜔
(

R1R−1
2
)
= 2 arccos

(
cos2 𝜁

2
± sin2 𝜁

2
e1 · e2

)
, (15)

e
(

R1R−1
2
)
= 1

sin 𝜔(R1R−1
2 )

2

(
sin 𝜁

2
cos 𝜁

2
(e1 ∓ e2) + sin2 𝜁

2
(∓(e1 × e2))

)
, (16)

that is, the axis e
(

R1R−1
2
)

is an element of the great circle spanned by either e1 − e2 (if 𝜔2 = 𝜔1) or e1 + e2 (if 𝜔2 = −𝜔1)
and ∓(e1 × e2), respectively.

Since q
(

R2R−1
1
)
= q∗ (R1R−1

2
)
, the angle and axis of R−1 = R2R−1

1 are given as

𝜔
(

R2R−1
1
)
= 𝜔

(
R1R−1

2
)
, (17)

e
(

R2R−1
1
)
= −e

(
R1R−1

2
)
, (18)

that is, the angle remains the same, and the axis flips sign. Analogously to Equation (8), an approximation of e
(

R1R−1
2
)

is

ê
(

R1R−1
2
)
= 𝜔1e1 − 𝜔2e2||𝜔1e1 − 𝜔2e2|| ≈ e

(
R1R−1

2
)
, (19)

that is, for sufficiently small angles 𝜔1 and 𝜔2, compare Equation (1), the normalized difference of the rotation vec-
tors is close to the true axis e

(
R1R−1

2
)

of the concatenation R1R−1
2 . As with respect to R−1 = R2R−1

1 the corresponding
approximation of its axis of rotation is ê

(
R2R−1

1
)
= −ê

(
R1R−1

2
)
, that is, it flips sign as the true axis.

The normalized difference of rotation vectors, Equation (19), has again and again been referred to as Euler pole of an
instantaneous relative rotation obtained by simple vector addition in geoscience papers and textbooks; for example, [12].
However, by construction, it is not a Euler pole. In this communication, it is referred to as the pseudo Euler pole of the
relative rotation R1R−1

2 on the great circle spanned by the fixed Euler poles e1 and e2 of the rotations R1 and R2.
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8 SCHAEBEN ET AL.

Applying Equation (7) to the relative rotation R1R−1
2 yields

𝜔
(

R1R−1
2
)

e
(

R1R−1
2
)
= 𝜔12 e12 ≈ 𝜔1 e1 − 𝜔2 e2. (20)

4.3.3 Circuit of relative rotations
Interchanging the roles of polygons P1 and P2 in a common view, the identity relationship

(
R1R−1

2
) (

R2R−1
1
)
= I holds

trivially. It generalizes for n rotations R1, … ,Rn, n ≥ 2, assigned one-to-one to n polygons P1, … ,Pn when successively
considering P𝓁+1 immobile with respect to P𝓁 , 𝓁 = 1, … ,n − 1, and Pn immobile with respect to P1 to(

R1R−1
2
) (

R2R−1
3
)
…

(
Rn−1R−1

n
) (

RnR−1
1
)
= I, (21)

or in terms of the approximation of the corresponding multiple relative rotation vectors

𝝎12 + 𝝎23 + … + 𝝎n1 = 𝜔12 e12 + 𝜔23 e23 + … + 𝜔n1 en1

≈ (𝜔1 e1 − 𝜔2 e2) + (𝜔2 e2 − 𝜔3 e3) + … + (𝜔n en − 𝜔1 e1) = 0,
(22)

FIGURE 1 Absolute and relative circular motion on the sphere. (Top) Spherical triangle P1 (green) and its associated fixed absolute Euler
pole e1 (green bullet), spherical triangle P2 (red) and its associated fixed absolute Euler pole e2 (red bullet), and normalized vectors (black
bullets) of the sum and the difference of fixed absolute Euler poles. (Bottom left) Triangle P1 (green) rotated for 75 Ma with rate
𝜛1 = 0.402◦/Ma about its fixed Euler pole e1 (green bullet) to R1P1, triangle P2 (red) rotated for 75 Ma with rate 𝜛2 = 0.086◦/Ma about its
fixed Euler pole e2 (red bullet) to R2P2. Considering triangle P2 (red) to be immobile, triangle R1P1 (green) appears to be rotated relative to
triangle R2P2 (red) by the relative rotation R1R−1

2 with 𝜔r about the Euler pole er (blue bullet) close to the pseudo Euler pole (black circle ◦),
compare Equation (19), for sufficiently small angles. (Bottom right) Interchanging the roles of P1 (green) and P2 (red), triangle P1 (green)
considered to be immobile, triangle R2P2 (red) appears to be rotated relative to triangle R1P1 (green) by the relative rotation R2R−1

1 with −𝜔r

about the Euler pole er (blue bullet). [Colour figure can be viewed at wileyonlinelibrary.com]
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SCHAEBEN ET AL. 9

which is referred to as plate circuit in plate tectonics when omitting the approximation, read as an equation, and expressed
formally in terms of relative angular velocity vectors of tectonic plates. Here, its initial expression, Equation (21), is derived
as a mathematical property of rotations and will be completed in Section 5.5.

5 TOWARDS MODELING THE KINEMATICS OF THE MOTION OF
TECTONIC PLATES

What has been sketched in Section 3 will be elaborated on here in greater detail. Throughout the following sections,
spherical polygons are assumed to model the geometry of tectonic plates even though edges of spherical polygons are
bound to be arcs of great circles by definition while boundaries of tectonic plates are not. Spherical polygons and tectonic
plates are denoted by the same symbol P. In fact, spherical triangles are used because the focus is on illustrations of the
method rather than on analyzing and modeling a specific geological setting.

5.1 Piecewise circular motion on the sphere in terms of sequences of finite rotations
Given a sequence of strictly increasing real temporal marks 𝜏𝓁 ,𝓁 = 0, 1, … , with 𝜏0 < 𝜏1 < … < 𝜏𝓁 < … , assigning
a unique rotation or rather orientation R(𝜏𝓁) to each 𝜏𝓁 with R(𝜏0) = I yields a sequence of temporally indexed rotations
R(𝜏𝓁) = R (𝜔(𝜏𝓁), e(𝜏𝓁)) ,𝓁 = 0, 1, … . The corresponding rotation vectors 𝝎(𝜏𝓁) = 𝜔(𝜏𝓁)e(𝜏𝓁),𝓁 = 1, 2, … , provide the
rotation rate of each individual rotation by way of the magnitude

𝜔(𝜏𝓁)
Δ𝜏𝓁

= ||𝝕(𝜏𝓁)||,𝓁 = 1, 2, … ,

of the vector

𝝕(𝜏𝓁) =
1

Δ𝜏𝓁
𝝎(𝜏𝓁) =

1
Δ𝜏𝓁

𝜔(𝜏𝓁)e(𝜏𝓁) = 𝜛(𝜏𝓁)e(𝜏𝓁),

with Δ𝜏𝓁 = 𝜏𝓁 − 𝜏𝓁−1,𝓁 = 1, … , of the mean angular velocity over the time interval (𝜏𝓁−1, 𝜏𝓁],𝓁 = 1, 2, … . Given
u ∈ S

2, the magnitude of its corresponding mean trajectoral velocity v(𝜏𝓁) = 𝝕(𝜏𝓁)×u tangential to the arc of the circular
trajectory of u when rotated by R(𝜔(𝜏𝓁), e(𝜏𝓁)) with radius 𝜌 = sin∠(e(𝜏𝓁),u) is

||v(𝜏𝓁)|| = 𝜔(𝜏𝓁)
Δ𝜏𝓁

𝜌 = 𝜔(𝜏𝓁)
Δ𝜏𝓁

sin∠(e(𝜏𝓁),u) = ||𝝕(𝜏𝓁) × u||.

5.2 Applying finite rotations successively
Given a spherical polygon P, the expression

R(𝜏𝓁)R(𝜏𝓁−1) … R(𝜏2)R(𝜏1)P

can be read in two different ways, either

R(𝜏𝓁) (R(𝜏𝓁−1) … (R(𝜏2)(R(𝜏1)P))) = P(𝓁),𝓁 = 1, 2, … , (23)

with R(𝜏𝓁) being applied to the immediately preceding rotational state P(𝓁−1), 𝓁 = 1, 2, … , of the initial polygon P, that
is, with

P(0) = R(𝜏0)P,P(𝓁) = R(𝜏𝓁)P(𝓁−1),𝓁 = 1, 2, … ,

or

(R(𝜏𝓁)R(𝜏𝓁−1) … R(𝜏2)R(𝜏1))P = R(𝓁)P,𝓁 = 1, 2, … , (24)
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10 SCHAEBEN ET AL.

where R(𝓁) denotes the successive concatenation of the first 𝓁 elements of the sequence R(𝜏𝓁),𝓁 = 1, 2, … , being applied
to the initial polygon P for all 𝓁 = 1, 2, … . The sequence of Equation (23) will be referred to as sequence of consecu-
tive incremental finite rotations, and the sequence of Equation (24) will be referred to as accumulated total rotation by
successive concatenation of incremental finite rotations.

Since in the strict mathematical sense a rotation is an instantaneous transformation of a given to a transformed
orientation of an object, compare Section 2, the final orientation of the polygon is of course the same for both models,

P(𝓁) = R(𝜏𝓁)P(𝓁−1) =
(

R(𝜏𝓁)R(𝓁−1))P = R(𝓁)P,𝓁 = 1, 2, … .

However, thinking of a rotation as a circular motion continuously changing the given initial to a transformed final orien-
tation of an object, the trajectories of a vertex of P to the corresponding vertex of P(𝓁),𝓁 = 2, 3, … , are generally different
for the two models. Applying the model of consecutive incremental rotations, Equation (23), the trajectory is continu-
ously composed of arcs of different circles. If, on the other hand, the model of successive concatenation, Equation (24), is
being applied, the trajectory comprises an arc of a unique circle.

Next, both models will be applied to the “three-plate problem” of plate tectonics in the following paragraphs.

5.2.1 Piecewise circular motion on the sphere by sequences of incremental finite rotations
Two initial plates P1 and P2 are rotated incrementally, that is,

P(0)
i = Ri(𝜏0)Pi,P(𝓁)

i = Ri(𝜏𝓁)P(𝓁−1)
i , i = 1, 2, 𝓁 = 1, 2, … , (25)

with Ri(𝜏𝓁) = R(𝜔i(𝜏𝓁), ei(𝜏𝓁)), i = 1, 2, 𝓁 = 1, 2, … , with respect to a third plate considered to be fixed thus providing a
fixed reference system. Then, the paths of the absolute motion of the two plates, that is, the trajectories of their vertices,
are continuously composed consecutive circular arcs according to R (𝜔i(𝜏𝓁), ei(𝜏𝓁)) of sizes 𝜔i(𝜏𝓁) joint at 𝜏𝓁 . If the Euler
poles are stationary, that is, ei(𝜏𝓁) = ei, i = 1, 2, 𝓁 = 1, 2, … , then the entire paths from P(0)

i to P(𝓁)
i are arcs of size∑

𝓁𝜔i(𝜏𝓁) of unique circles.
Applying Equations (11) and (12), the path of the relative motion of P(𝓁−1)

1 with respect to P(𝓁)
2 considered to be immobile

is given by

ΔR(𝜏𝓁) = R1(𝜏𝓁)(R2(𝜏𝓁))−1

= R (𝜔1(𝜏𝓁), e1(𝜏𝓁)) (R (𝜔2(𝜏𝓁), e2(𝜏𝓁)))−1,𝓁 = 1, 2, … ,

applied to P(𝓁)
2 , and the path of the relative motion of polygon P(𝓁−1)

2 as observed from polygon P(𝓁)
1 considered to be

immobile is given by

(ΔR(𝜏𝓁))−1 = R2(𝜏𝓁)(R1(𝜏𝓁))−1

= R (𝜔2(𝜏𝓁), e2(𝜏𝓁)) (R (𝜔1(𝜏𝓁), e1(𝜏𝓁)))−1,𝓁 = 1, 2, … ,

applied to P(𝓁)
1 .

Four consecutive steps of absolute and relative incrementally piecewise circular motion on the sphere are depicted
in Figure 2.

The angle and axis of ΔR(𝜏𝓁) and (ΔR(𝜏𝓁))−1, respectively, are given by application of Equations (13) and (14) and
Equations (17) and (18), respectively. If 𝜔i(𝜏𝓁), i = 1, 2, are assumed to be sufficiently small, compare Equation (1), then
the approximation Equation (19) applies and

ê (ΔR(𝜏𝓁)) =
𝜔1(𝜏𝓁)e1(𝜏𝓁) − 𝜔2(𝜏𝓁)e2(𝜏𝓁)||𝜔1(𝜏𝓁)e1(𝜏𝓁) − 𝜔2(𝜏𝓁)e2(𝜏𝓁)|| ≈ e (ΔR(𝜏𝓁)) .

In the most simple case assuming stationary Euler poles ei(𝜏𝓁) = ei and sufficiently small constant angles 𝜔i(𝜏𝓁) = 𝜔i, i =
1, 2, for example, constant rates𝜛i, i = 1, 2, and unique time lagsΔ𝜏 = 𝜏𝓁−𝜏𝓁−1,𝓁 = 1, 2, … such that𝜔i = Δ𝜏𝜛i, i = 1, 2,
are sufficiently small, the pseudo Euler pole ê(ΔR(𝜏𝓁)) of the incremental relative rotation is seen to be stationary as

ê (ΔR(𝜏𝓁)) =
Δ𝜏𝜛1e1 − Δ𝜏𝜛2e2||Δ𝜏𝜛1e1 − Δ𝜏𝜛2e2||

becomes independent of 𝜏𝓁 .
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SCHAEBEN ET AL. 11

FIGURE 2 Four consecutive steps of absolute and relative incrementally piecewise circular motion on the sphere. (Rows 1 to 4, left
column) Triangle P1 (green) successively incrementally rotated by 𝜔1 = 0.402◦ about its fixed Euler pole e1 (green bullet) to P(𝓁)

1 ,𝓁 = 0, … , 4,
(Equation 25), triangle P2 (red) successively rotated by 𝜔2 = 0.086◦ about its fixed Euler pole e2 (red bullet) to P(𝓁)

2 ,𝓁 = 0, … , 4, considering
triangle P(𝓁)

2 (red) to be immobile, triangle P(𝓁)
1 (green) appears to be rotated relative to triangle P(𝓁)

2 ,𝓁 = 1, … , 4, (red) by the relative rotation
R1R−1

2 about the Euler pole er (blue bullet) close to the pseudo Euler pole (black circle ◦), compare Equation (19), for sufficiently small
angles. (Rows 1 to 4, right column) Interchanging the roles of P1 (green) and P2 (red), triangle P(𝓁)

1 (green) considered to be immobile, triangle
P(𝓁)

2 (red) appears to be rotated relatively to triangle P(𝓁)
1 ,𝓁 = 1, … , 4, (green) by the relative rotation R2R−1

1 about the Euler pole er (blue
bullet). [Colour figure can be viewed at wileyonlinelibrary.com]

5.2.2 Piecewise circular motion on the sphere by accumulating successive concatenations of
finite rotations
Successive concatenations of rotations of two sequences of temporally indexed rotations provide another simple model to
resolve the three-plate problem in terms of accumulated total absolute and relative motion. The findings of Sections 4.2
and 4.3 immediately apply to determine the paths of the absolute motion of the two plates, that is, the trajectories of
their vertices, as well as the path of the relative motion of P1 with respect to P2 if considered to be immobile, and its
corresponding migrating Euler pole (MEP).
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12 SCHAEBEN ET AL.

The initial two plates Pi, i = 1, 2, are subject to rotations R (Ωi(𝜏𝓁),Ei(𝜏𝓁)) such that

R(𝓁)
i Pi = R (Ωi(𝜏𝓁),Ei(𝜏𝓁))Pi = P(𝓁)

i , i = 1, 2, 𝓁 = 1, 2, … , (26)

resulting from successive concatenations of rotations R(𝜔i(𝜏𝑗), ei(𝜏𝑗)), 𝑗 = 1, … ,𝓁, that is,

R (Ωi(𝜏𝓁),Ei(𝜏𝓁)) = R (𝜔i(𝜏𝓁), ei(𝜏𝓁)) R (𝜔i(𝜏𝓁−1), ei(𝜏𝓁−1)) …

… R (𝜔i(𝜏1), ei(𝜏1)) , i = 1, 2, 𝓁 = 1, 2, … .
(27)

The trajectories of the vertices of Pi to the corresponding vertices of P(𝓁)
i are described by Equation (26), that is, by the

accumulated total change of the rotational state at time 𝜏𝓁 .
Considering P2 to be immobile, the angle 𝜔MEP(𝜏𝓁) and axis eMEP(𝜏𝓁) of the relative rotation

R = R (𝜔MEP(𝜏𝓁), eMEP(𝜏𝓁)) = R (Ω1(𝜏𝓁),E1(𝜏𝓁)) (R (Ω2(𝜏𝓁),E2(𝜏𝓁)))−1

are given by virtue of Equations (13) and (14) as

𝜔MEP(𝜏𝓁) = 2 arccos
(

cos Ω1(𝜏𝓁)
2

cos Ω2(𝜏𝓁)
2

+ sin Ω1(𝜏𝓁)
2

sin Ω2(𝜏𝓁)
2

E1(𝜏𝓁) · E2(𝜏𝓁)
)

(28)

eMEP(𝜏𝓁) =
1

sin 𝜔MEP(𝜏𝓁)
2

(
cos Ω2(𝜏𝓁)

2
sin Ω1(𝜏𝓁)

2
E1(𝜏𝓁) − cos Ω1(𝜏𝓁)

2
sin Ω2(𝜏𝓁)

2
E2(𝜏𝓁)

− sin Ω1(𝜏𝓁)
2

sin Ω2(𝜏𝓁)
2

E1(𝜏𝓁) × E2(𝜏𝓁)
)
.

(29)

Assuming stationary absolute Euler poles ei(𝜏𝓁) = ei, i = 1, 2, for all 𝓁 = 1, 2, … , resulting in Ei(𝜏𝓁) = Ei = ei, or
assuming constant rates 𝜛i(𝜏𝓁) = 𝜛i, i = 1, 2, resulting in Ωi(𝜏𝓁) =

∑𝓁
𝑗=1 Δ𝜏𝑗𝜛i, i = 1, 2, for all 𝓁 = 1, 2, … , would

simplify the model. As known from Equation (16), the axes eMEP(𝜏𝓁),𝓁 = 1, 2, … , of successive accumulated total relative
rotations migrate along a great circle if the absolute Euler poles ei are stationary and the rates are absolutely equal, that is,|𝜛1| = |𝜛2|. Otherwise, and contrary to [13], the path of the migrating Euler pole is not generally a small circle centered
at one of the absolute Euler poles.

Absolute and relative accumulated total piecewise circular motion after four steps, that is, after 300 Ma, is shown in
Figure 3, confirming by the way that the migrating Euler pole does not generally move along a small circle.

The approximation

êMEP(𝜏𝓁) =
Ω1(𝜏𝓁)E1(𝜏𝓁) − Ω2(𝜏𝓁)E2(𝜏𝓁)||Ω1(𝜏𝓁)E1(𝜏𝓁) − Ω2(𝜏𝓁)E2(𝜏𝓁)|| ≈ eMEP(𝜏𝓁) (30)

holds if Ωi(𝜏𝓁), i = 1, 2, are sufficiently small, compare Equation (19). Since constant rates 𝜛i(𝜏𝓁) = 𝜛i result in Ωi(𝜏𝓁) =∑𝓁
𝑗=1 Δ𝜏𝑗𝜛i, i = 1, 2, for all 𝓁 = 1, 2, … , Equation (30) simplifies to

êMEP =
∑𝓁

𝑗=1 Δ𝜏𝑗𝜛1E1(𝜏𝓁) −
∑𝓁

𝑗=1 Δ𝜏𝑗𝜛2E2(𝜏𝓁)||∑𝓁
𝑗=1 Δ𝜏𝑗𝜛2E1(𝜏𝓁) −

∑𝓁
𝑗=1 Δ𝜏𝑗𝜛2E2(𝜏𝓁)||

= 𝜛1E1(𝜏𝓁) −𝜛2E2(𝜏𝓁)||𝜛1E1(𝜏𝓁) −𝜛2E2(𝜏𝓁)|| ,
(31)

revealing that with the additional assumption of stationary Euler poles Ei(𝜏𝓁) = Ei = ei, i = 1, 2, the pseudo Euler pole
êMEP is stationary. Depending on the rates 𝜛i and the time lags 𝜏𝓁 such that

∑𝓁
𝑗=1 Δ𝜏𝑗𝜛i are sufficiently small, it may be

expected that

êMEP ≈ eMEP(𝜏𝓁),𝓁 = 1, … ,L0, (32)

that is, that the stationary pseudo Euler pole êMEP is close to the first few eMEP(𝜏𝓁) with 𝓁 = 1, … ,L0 only. Otherwise,
Equation (31) provides a poor approximation.
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SCHAEBEN ET AL. 13

FIGURE 3 Absolute and relative accumulated total piecewise circular motion on the sphere after four steps, that is, after 300 Ma. (Top)
Spherical triangle P1 (green) and its associated fixed absolute Euler pole e1 (green bullet), spherical triangle P2 (red) and its associated fixed
absolute Euler pole e2 (red bullet), normalized vectors (black bullets) of the sum and the difference of fixed absolute Euler poles, pseudo
Euler pole (Equation 19) (black circle ◦) for sufficiently small angles of rotation, and unit vector of the sum of rotation vectors 𝜔1e1 + 𝜔2e2

(black circle ◦) which is fixed as the ratio of rates 𝜏𝜔1∕𝜏𝜔2 = 𝜔1∕𝜔2 remains constant through time. (Bottom left) Triangle P1 (green)
successively rotated with stepsize given by multiples (75) of rate 𝜛1 = 0.402◦/Ma about its fixed Euler pole e1 (green bullet) to
R(𝓁)

1 P1,𝓁 = 1, … , 4 (Equation 26), triangle P2 (red) successively rotated with stepsize given by multiples (75) of rate 𝜛2 = 0.086◦/Ma about its
fixed Euler pole e2 (red bullet) to R(𝓁)

2 P2,𝓁 = 1, … , 4, considering triangle R(𝓁)
2 P2 (red) to be immobile, triangle R(𝓁)

1 P1 (green) appears to be
rotated relative to triangle R(𝓁)P2 (red) by the relative rotation RMEP = R(𝓁)

1 (R(𝓁)
2 )−1,𝓁 = 1, … , 4, about the migrating Euler pole eMEP (blue

bullets). (Bottom right) Interchanging the roles of P1 (green) and P2 (red), triangle R(𝓁)
1 P1 (green) considered to be immobile, triangle R(𝓁)

2 P2

(red) appears to be rotated relatively to triangle R(𝓁)P1 (green) by the relative rotation (RMEP)−1 = R(𝓁)
2

(
R(𝓁)

1

)−1
,𝓁 = 1, … , 4, about the

migrating Euler pole eMEP (blue bullets). [Colour figure can be viewed at wileyonlinelibrary.com]

5.2.3 Features of accumulated total rotations
It might be geologically tempting to hypothesize simple relationships linking a sequence of accumulated total to their
incremental rotations in terms of invariant geometrical or topological features. For instance, if polygon P1 is considered
to be immobile, compare Figures 2 and 3, the migrating relative Euler pole e(𝓁)

MEP might be imagined to be immobile with

respect to R(𝓁)
1 P2 being rotated to R(𝓁)

2 P2 by the relative rotation R(𝓁)
2

(
R(𝓁)

1

)−1
. However, simple computations summarized

in Table 1 and a closer look, Figure 4, reveal that the angle between the Euler pole e(𝓁)
MEP and a given vertex v(𝓁) of R(𝓁)

1 P2, 𝓁 =
1, … , 4, is not constant.

5.3 Continuous rotation in terms of time-dependent quaternion and continuous
circular motion on the sphere in terms of its temporal derivative
Angular displacement and both angular and trajectoral velocity of a transient rotation are derived as functions of time
in terms of temporal derivatives of transient quaternions with special emphasis on the angle-axis parametrization of
rotations, unlike [14, pp. 56–59] applying quaternion and (3 × 3) matrix notation.
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14 SCHAEBEN ET AL.

TABLE 1 Features of accumulated total rotations R(𝜛1 t, e1) and
R(𝜛2 t, e2) about fixed Euler poles e1 and e2, respectively, and their
accumulated total relative rotation R(𝜛2 t, e2)(R(𝜛1 t, e1))−1.

t 𝝎1 = 𝝕1t 𝝎2 = 𝝕2t 𝝎MEP 𝜼 𝜽

(Ma) (◦) (◦) (◦) (◦) (◦)
75 30.2 6.4 31.5 87.0 3.0
150 60.4 12.9 62.9 90.0 3.2
225 90.5 19.3 94.1 93.3 3.4
300 120.7 25.7 125.0 97.0 3.8

Note: col 1: t time mark; col 2: 𝜔1 = 𝜛1 t cumulative angle of rotation about
fixed Euler pole e1 with 𝜛1 = 0.402 (◦/Ma); col 3: 𝜔2 = 𝜛2 t cumulative
angle of rotation about fixed Euler pole e2 with 𝜛2 = 0.086 (◦/Ma); col 4:
𝜔MEP cumulative angle of rotation about migrating Euler pole eMEP; col 5:
𝜂 = ∠(eMEP, v) spherical distance (along great circle) between successive
migrating relative Euler pole eMEP and given edge v of polygon being rotated;
col 6: 𝜃 = ∠(eMEP(t), eMEP(t − Δt)), Δt = 75 Ma, spherical distance (along
great circle) between successive relative Euler poles eMEP migrating along
their path which is not a circle.

FIGURE 4 Features of accumulated total rotations R(𝜛1 t𝓁 , e1) and R(𝜛2 t𝓁 , e2) about fixed Euler poles e1 (green bullet) and e2 (red bullet),
respectively, with 𝜛1 = 0.402 (◦/Ma), 𝜛2 = 0.086 (◦/Ma), and t𝓁 = 𝓁 75 (Ma), 𝓁 = 1, … , 4, and their accumulated total relative rotation
R(𝜛2 t, e2)(R(𝜛1 t, e1))−1 about migrating Euler poles e(𝓁)

MEP, 𝓁 = 1, … , 4, (blue bullets). (Left) The trajectories of a given vertex v(𝓁) of

R(𝓁)
2

(
R(𝓁)

1

)−1
P2 rotating about the relative Euler pole e(𝓁)

MEP, 𝓁 = 1, … , 4, are not arcs of concentric circles, because their centers are the

migrating Euler poles. (Right) The angles of a given vertex v(𝓁) of R(𝓁)
2

(
R(𝓁)

1

)−1
P2 and the axis of its rotation R(𝓁)

2

(
R(𝓁)

1

)−1
, 𝓁 = 1, … , 4, the

migrating Euler pole, are not constant. [Colour figure can be viewed at wileyonlinelibrary.com]

Considering a transient rotation R (𝜔(t), e(t)) in terms of quaternions

q(t) = cos 𝜔(t)
2

+ e(t) sin 𝜔(t)
2

, t ∈ R,

its temporal derivative is given by

d
dt

q(t) = d
dt

q0(t) +
d
dt

q(t),

that is, explicitly

.q(t) = −1
2

.
𝜔(t) sin 𝜔(t)

2
+ 1

2
.
𝜔(t) cos 𝜔(t)

2
e(t) + sin 𝜔(t)

2
.e(t), (33)

where the derivative with respect to t is denoted by a dot on top of the symbol. Then, the trajectory of the pure quaternion,
that is, vector u0, under the rotation specified by q(t) is

u(t) = q(t) ◦ u0 ◦ q∗(t), (34)
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SCHAEBEN ET AL. 15

and its instantaneous trajectoral velocity by

v(t) = .u(t) = .q(t) ◦ u0 ◦ q∗(t) + q(t) ◦ u0 ◦
.

q∗(t)

= .q(t) ◦ u0 ◦ q∗(t) + q(t) ◦ u0 ◦
.q∗(t),

(35)

applying d
dt

q∗(t) =
(

d
dt

q(t)
)∗

. Replacing u0 in Equation (35) with q∗(t)u(t)q(t) from Equation (34) gives

v(t) = .q(t) ◦ q∗(t) ◦ u(t) + u(t) ◦ q(t) ◦ .q∗(t)

= .q(t) ◦ q∗(t) ◦ u(t) + u(t) ◦ ( .q(t) ◦ q∗(t))∗.
(36)

5.3.1 Transient angle and stationary axis of rotation
In the special case that the axis of rotation is assumed to be stationary, Equation (33) simplifies to

.q(t) = −1
2

.
𝜔(t) sin 𝜔(t)

2
+ 1

2
.
𝜔(t) cos 𝜔(t)

2
e

and yields

.q(t) ◦ q∗(t) = 1
2

.
𝜔(t)

(
− sin 𝜔(t)

2
+ e cos 𝜔(t)

2

)
◦
(

cos 𝜔(t)
2

− e sin 𝜔(t)
2

)
= 1

2
.
𝜔(t)e.

The pure quaternion 2 .q(t) ◦ q∗(t) is referred to as the vector of the instantaneous angular velocity

.
𝝎(t) = .

𝜔(t)e = 2 .q(t) ◦ q∗(t), (37)

with magnitude || .
𝝎(t)|| = | .

𝜔(t)|. Then, the instantaneous trajectoral velocity is

v(t) = 1
2
( .
𝝎(t) ◦ u(t) − u(t) ◦ .

𝝎(t)) = .
𝝎(t) × u(t), (38)

||v(t)|| = | .
𝜔(t)| sin∠(e,u(t)), (39)

with instantaneous angular rate .
𝜔(t) = d

dt
𝜔(t). If .

𝜔(t) = const, then the motion is uniform, 𝜔(t) = ct and .
𝝎(t) = ce.

5.3.2 Transient angle and axis of rotation
The equation of departure is Equation (36). Since

q(t) ◦ q∗(t) = 1

implies
.q(t) ◦ q∗(t) + q(t) ◦ .q∗(t) = .q(t) ◦ q∗(t) + ( .q(t) ◦ q∗(t))∗ = 0, (40)

it follows that .q(t) ◦ q∗(t) is a pure quaternion, that is, a vector. It satisfies

.q(t) ◦ q∗(t) = 1
2

.
𝝎(t).

Then, with Equation (40)
.
𝝎(t) = 2 .q(t) ◦ q∗(t) = −2q(t) ◦ .q∗(t), (41)
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16 SCHAEBEN ET AL.

and as before, compare Equation (38), the vector of the instantaneous trajectoral velocity is

v(t) = 1
2
( .
𝝎(t) ◦ u(t) − u(t) ◦ .

𝝎(t)) = .
𝝎(t) × u(t). (42)

To complete the short outlook of Section 3.2, given angle and axis of rotation as continuous function of time,
Equations (27) and (26) and Equations (28) and (29) require little revision only dropping successive concatenation and
replacing Ω(𝜏𝓁),E(𝜏𝓁),𝓁 = 1, 2, … , depending on discrete time steps 𝜏𝓁 ,𝓁 = 1, 2, … , by continuous functions 𝜔(t), e(t)
to allow to compute location, absolute and relative rotation (orientation), angular and trajectoral velocity of the polygons
being rotated, and more features of the motion on the sphere for any given time.

5.4 Migrating Euler pole
For example, for a general transient view of the model of accumulated total absolute and relative motion of two plates
and their migrating relative Euler pole the notation is slightly changed to adapt to the continuous time dependence.

Then, the temporal derivative of the transient relative rotation q1(t)q∗
2(t) (considering P2 fixed) is

d
dt

(
q1(t) ◦ q∗

2(t)
)
= .q1(t) ◦ q∗

2(t) + q1(t) ◦
.q∗

2(t),

and the relative instantaneous angular velocity is

1
2

.
𝝎
[
R1R−1

2
]
(t) =

(
d
dt

q1(t) ◦ q∗
2(t)

)
◦
(

q1(t) ◦ q∗
2(t)

)∗
=

( .q1(t) ◦ q∗
2(t) + q1(t) ◦

.q∗
2(t)

)
◦
(

q2(t) ◦ q∗
1(t)

)
= .q1(t) ◦ q∗

1(t) + q1(t) ◦
( .q∗

2(t) ◦ q2(t)
)
◦ q∗

1(t)

= 1
2

.
𝝎1(t) + q1(t) ◦

( .q∗
2(t) ◦ q2(t)

)
◦ q∗

1(t).

For a complementary view, the focus is separately on the transient relative angle of rotation and its derivative, the scalar
angular velocity, and on the transient relative axis of rotation and its derivative, the path of the migrating Euler pole. To
this end Equations (13) and (14) are rewritten in terms of time-dependent variables:

𝜔
[
R1R−1

2
]
(t) = 2 arccos

(
cos 𝜔1(t)

2
cos 𝜔2(t)

2
+ sin 𝜔1(t)

2
sin 𝜔2(t)

2
e1(t) · e2(t)

)
, (43)

e
[
R1R−1

2
]
(t) = 1

sin 𝜔[R1R−1
2 ](t)

2

(
cos 𝜔2(t)

2
sin 𝜔1(t)

2
e1(t) − cos 𝜔1(t)

2
sin 𝜔2(t)

2
e2(t) − sin 𝜔1(t)

2
sin 𝜔2(t)

2
e1(t) × e2(t)

)
.

(44)
To begin with the most simple case to accomplish instructive results, the individual Euler poles ei, i = 1, 2, are assumed

to be stationary, that is, ei(t) = ei, i = 1, 2, and the rates .
𝜔i(t) = 𝜛i, i = 1, 2, are assumed to be constant, that is,

𝜔i(t) = 𝜛it, i = 1, 2.

5.4.1 Transient rotation rate with respect to migrating Euler pole
From Equation (43) and

d
dt

cos
𝜔
[
R1R−1

2
]
(t)

2
= −1

2
sin

𝜔
[
R1R−1

2
]
(t)

2
.
𝜔
[
R1R−1

2
]
(t),
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SCHAEBEN ET AL. 17

.
𝜔
[
R1R−1

2
]
(t) satisfies

.
𝜔
[
R1R−1

2
]
(t) = − 2

sin 𝜔[R1R−1
2 ](t)

2

d
dt

(
cos 𝜔1(t)

2
cos 𝜔2(t)

2
+ sin 𝜔1(t)

2
sin 𝜔2(t)

2
e1 · e2

)

= 2

sin 𝜔[R1R−1
2 ](t)

2

(𝜛1

2
sin 𝜛1t

2
cos 𝜛2t

2
+ 𝜛2

2
sin 𝜛2t

2
cos 𝜛1t

2

−e1 · e2

(𝜛1

2
cos 𝜛1t

2
sin 𝜛2t

2
+ 𝜛2

2
cos 𝜛2t

2
sin 𝜛1t

2

))
,

(45)

and in the special case of absolutely equal rates |𝜛1| = |𝜛2|
.
𝜔
[
R1R−1

2
]
(t) = 2

sin 𝜔[R1R−1
2 ](t)

2

(1 ∓ e1 · e2) 𝜁 sin 𝜁 t
2

cos 𝜁 t
2
.

5.4.2 Trajectory of migrating Euler pole
To determine the temporal derivative of the migrating Euler pole e

[
R1R−1

2
]
(t) of Equation (44) recall that for any unit

vector e(t) ∈ S
2 e(t) · e(t) = 1, thus

0 = d
dt

(e(t) · e(t)) = 2 .e(t) · e(t),

that is, e(t) and its temporal derivative .e(t) are orthogonal.
Using the same assumptions as in Section 5.4.1, Equation (44) may be rewritten as

e
[
R1R−1

2
]
(t) = 𝜑(t)q(t),

with
𝜑(t) = 1||q(t)|| = 1

sin 𝜔[R1R−1
2 ](t)

2

,

q(t) = cos 𝜔2(t)
2

sin 𝜔1(t)
2

e1 − cos 𝜔1(t)
2

sin 𝜔2(t)
2

e2 − sin 𝜔1(t)
2

sin 𝜔2(t)
2

e1 × e2.

Since

.
𝜑(t) = −

1
2

.
𝜔
[
R1R−1

2
]
(t) cos 𝜔[R1R−1

2 ](t)
2

sin2 𝜔[R1R−1
2 ](t)

2

,

with .
𝜔
[
R1R−1

2
]
(t) given by Equation (45),

.e
[
R1R−1

2
]
(t) = .

𝜑(t)q(t) + 𝜑(t) .q(t)

= 1

sin2 𝜔[R1R−1
2 ](t)

2

(
sin

𝜔
[
R1R−1

2
]
(t)

2
.q(t) − 1

2
.
𝜔
[
R1R−1

2
]
(t) cos

𝜔
[
R1R−1

2
]
(t)

2
q(t)

)
,

where

.q(t) = d
dt

(
cos 𝜛2t

2
sin 𝜛1t

2
e1 − cos 𝜛1t

2
sin 𝜛2t

2
e2 − sin 𝜛1t

2
sin 𝜛2t

2
e1 × e2

)
=

(𝜛1

2
cos 𝜛1t

2
cos 𝜛2t

2
− 𝜛2

2
sin 𝜛1t

2
sin 𝜛2t

2

)
e1 +

(𝜛1

2
sin 𝜛1t

2
sin 𝜛2t

2
− 𝜛2

2
cos 𝜛1t

2
cos 𝜛2t

2

)
e2

−
(𝜛1

2
cos 𝜛1t

2
sin 𝜛2t

2
+ 𝜛2

2
sin 𝜛1t

2
cos 𝜛2t

2

)
e1 × e2.

(46)

The temporal derivatives in the general case would be more involved and cumbersome to present, but not prohibitive
of computation.
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18 SCHAEBEN ET AL.

5.5 Tectonic plate circuit
Slightly generalizing Equation (20) derived in Section 4.2, the approximation of the transient relative rotation vector
𝜔12(t)e12 ≈ 𝜔1(t)e1 − 𝜔2(t)e2 implies

.
𝜔12(t)e12 ≈ .

𝜔1(t)e1 −
.
𝜔2(t)e2,

that is, the vector of the relative instantaneous angular velocity is approximately equal to the difference of the vectors of
absolute instantaneous angular velocity with respect to stationary or instantaneous rotation axes. Then, taking temporal
derivatives of the initial plate-circuit expression, Equation (22), yields

𝝎12 + 𝝎23 + … + 𝝎n1 ≈ 0, (47)

stating that the sum of relative instantaneous angular velocity vectors approximately vanishes. Omitting the approxima-
tion inherent in Equation (47) and taking it as an equation, it has been referred to as tectonic plate circuit in terms of
relative angular velocity vectors ever since [2, 15, 16]. Referring to infinitesimal rotations and an infinitesimal circuit
about a triple junction, the equation is presented for n = 3 as an easy spherical extension of classical mechanics in the
plane in [16, eq. (2), p. 1277], in any case without proof as conceded by the authors in [15, eq. (3), p. 286]. For a unique
vector u(t) ∈ S

3 subject to all rotations Ri, i = 1, … ,n, the previous Equation (47) implies

𝝎12 × u(t) + 𝝎23 × u(t) + … + 𝝎n1 × u(t) ≈ 0, (48)

that is, the sum of relative instantaneous trajectoral velocities approximately vanishes. Interestingly enough, a term as
one of the terms on the left-hand side of Equation (48) defining an instantaneous relative trajectoral velocity was used as
the basis of the derivation of Equation (47) in [15, eq. (7), p. 287].

Summing up, transient absolute rotations with respect to a fixed reference frame, for example, a fixed coordinate sys-
tem for simplicity, determine their corresponding transient relative rotations. A transient absolute and a corresponding
transient relative rotation determine the other transient absolute rotation corresponding to the transient relative rota-
tion. Moreover, plate-circuit arguments may apply to determine relative transient rotations from other relative transient
rotations.

The general assumption is that the rotating plates do not interact.

5.6 Inventory of spherical kinematics of plate tectonics
Table 2 compiles the inventory of kinematic modeling of the motion of tectonic plates and aims at clarifying its terms and
notation and their relationships.

6 GEOLOGICAL APPLICATION OF PIECEWISE AND CONTINUOUS
KINEMATIC MODELING OF CIRCULAR MOTION ON THE SPHERE

The versatile practicability of the mathematical tools of quantitative spherical kinematics of plate tectonics as provided
here is exemplified by two geological applications. The first example features a numerical application of a plate-circuit
argument to determine the migrating relative Euler pole of the relative rotation of two plates with respect to each other
given their rotations with respect to a third plate about Euler poles referred to as absolute, as they are assumed to be fixed.
The second example presents an involved interplay of incremental and accumulating modeling inducing split–join cycles
to approximate an observed pattern of sinusoidal geological trajectories as reported by [17], compare Figure 8, and [18]
to record the Gondwana breakup.

6.1 Three-plate problem and its migrating Euler pole by numerical resolution of a plate
circuit
Using the spherical deformation pattern of the continents, compare [19], plate tectonic conditions in the early Paleozoic
were reconstructed by Kroner et al. [20, 21]. During the formation of the supercontinent Pangea, the continents Gondwana
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SCHAEBEN ET AL. 19

Symbol Meaning
u,w Unit vectors in S

2
⊂ R

3, for example, vertices of spherical polygons
R Finite rotation in R

3, for example, w = Ru
R(𝜔, e) Rotation parametrized in terms of

angle 𝜔 ∈ (−𝜋, 𝜋] and axis e ∈ S
2
⊂ R

3

Piecewise circular motion
by temporally indexed successive concatenation

𝜏0 < 𝜏1 < … < 𝜏i < … Increasing sequence of real discrete temporal marks 𝜏i, i = 1, 2, …
Ri = R (𝜔(𝜏i), e(𝜏i)) Sequence of temporally indexed rotations Ri, i = 1, 2, …
R(𝓁) = R𝓁R𝓁−1 … R1 Concatenation of rotations Ri, i = 1, 2, … ,𝓁
Δ𝜏i = 𝜏i − 𝜏i−1, i = 1, 2, … Finite time lags
𝝎i = 𝜔iei Rotation vector associated with R(𝜔i, ei), i = 1, 2, …
𝝕i = (1∕Δ𝜏i)𝜔iei Vector of the mean angular velocity in (𝜏i−1, 𝜏i]

associated with Ri = R(𝜔i, ei)
changing the orientation from Ri−1 to Ri, i = 1, 2, …||𝝕i|| = 𝜔i∕Δ𝜏i = 𝜛 Mean rotation rate associated with Ri = R(𝜔i, ei)

vi = 𝝕i × ui Vector of the mean velocity of ui

tangential to its small circle of rotation in (𝜏i−1, 𝜏i], i = 1, 2, …
Continuous rotation
in terms of time-dependent quaternion

R (𝜔(t), e(t)) Transient rotation u(t) = R (𝜔(t), e(t)) u(t0), t ∈ [t0,∞)
𝝎(t) = 𝜔(t)e(t) Instantaneous rotation vector associated with R (𝜔(t), e(t))
.
𝜔(t) Instantaneous rotation rate associated with R (𝜔(t), e(t))
.
𝝎(t) Vector of the instantaneous angular velocity

.
𝝎(t) = 2 .q(t) ◦ q∗(t)

v(t) = .
𝝎(t) × u(t) Vector of the instantaneous trajectoral velocity of u(t)

tangential to its small circle of rotation

TABLE 2 Inventory of spherical
kinematics of plate tectonics.

(GON) and North America (NAC) converged towards Eastern Europe (EEC) for a period of 70 Ma from 500 to 430 Ma.
This convergence is coeval with their mutual divergence, which in turn resulted in the formation of the Rheic Ocean,
compare Figure 5.

Euler poles eGON and eNAC of Gondwana's and North America's relative rotational motion with respect to Eastern Europe
considered to be immobile were assumed to be stationary and determined by constructive geological reasoning [20, 21].
The corresponding geological reconstruction revealed a complex path of migrating Euler poles describing the divergent
motion of Gondwana relative to North America during a time span of 70 Ma. Such a hitherto unexplained migration path
of Euler poles is described abstractly here in Section 4.3. Given stationary axes of rotation of Gondwana and North Amer-
ica, respectively, the relative rotation of Gondwana with respect to North America or vice versa requires a transient axis
of rotation, that is, a migrating Euler pole eMEP.

The counterclockwise rotation REEC(𝜛GON t, eGON) of GON with respect to EEC by the constant rotational rate of
𝜛GON = 1.23 (◦/Ma) about the stationary Euler pole eGON with geographical coordinates (13.3[◦lat], −23.9[◦lon]), and the
counterclockwise rotation REEC(𝜛NAC t, eNAC) of NAC with respect to EEC by the constant rotational rate of 𝜛NAC = 0.42
(◦/Ma) about the stationary Euler pole eNAC with geographical coordinates (77.6[◦lat], 61.9[◦lon]) are given. Then, the
transient rotation RNAC (𝜔MEP(t), eMEP(t)) of GON with respect to NAC is determined by the plate-circuit argument,
Equation (21), written symbolically as (GONRNAC) (NACREEC) (EECRGON) = I. In terms of properly parametrized rotations
dropping the subscripts, it reads

R (𝜔MEP(t), eMEP(t)) R (𝜛NAC t, eNAC) (R (𝜛GON t, eGON))−1 = I

and leads to

R (𝜔MEP(t), eMEP(t)) = R (𝜛GON t, eGON) (R (𝜛NAC t, eNAC))−1,

the numerical evaluation of which is summarized in Table 3 and visualized in Figure 5.
The path of migrating Euler poles as depicted in Figure 5 consists of Euler poles of relative rotations

with respect to accumulated rotations about fixed Euler poles eGON and eNAC, accumulated in the time spans
(500,TAge], TAge = 495,490, … , 430, that is, of Euler poles of the relative rotations R

(
1.23 (500 − TAge), eGON

)
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20 SCHAEBEN ET AL.

FIGURE 5 Numerical application of a plate-circuit argument to resolve a three-plate problem of early Paleozoic plate tectonics [20, 21].
From 500 to 430 Ma, Gondwana and North America were rotated relative to the East European Craton about stationary Euler poles eGON (green
bullet) and eNAC (red bullet), respectively. At 500 Ma, Gondwana rotated relative to North America about the relative Euler pole eMEP located
close to the pseudo Euler pole, compare Equation (32), on the great circle spanned by eGON and eNAC. According to proceedingly accumulated
total rotations of Gondwana and North America about their stationary Euler poles, the Euler pole of their relative rotation migrates away
from the pseudo Euler pole along a path as indicated by a sequence of eMEP (colored bullets). It is emphasized that the relative Euler pole
does not migrate along any small circle centered at eGON (inset at lower left). [Colour figure can be viewed at wileyonlinelibrary.com]

(
R
(
0.42 (500 − TAge), eNAC

))−1
, TAge = 495,490, … , 430. The first Euler pole assigned to TAge = 500 along the path of

migration is the stationary Euler pole of the relative rotation R (1.23, eGON) (R (0.42, eNAC))−1 of the incremental rota-
tions R (1.23, eGON) and R (0.42, eNAC) corresponding to a time lag of 1 Ma. Since the rates 𝜛GON and 𝜛NAC are small, the
incremental relative Euler pole is close to the pseudo Euler pole, Equation (19), on the great circle spanned by eGON and
eNAC.

Since the plate-circuit argument has been derived from properties of rotations featuring sufficiently small angles of
rotation, this example suggests that the motion of the migrating relative Euler pole is not driven by geodynamics but
merely depends on the chosen reference frame, that is, on the point of view.

6.2 Modeling of sinusoidal trajectories
Two spherical polygons assumed to model the geometry of two divergent tectonic plates with a common segment of
boundary are subject to incremental rotational motions R1 and R2 (cf. Section 5.2.1 and Figure 2) about two different fixed
absolute Euler poles e1 and e2 with different rotational rates resulting in relative orientations R1R−1

2 and R2R−1
1 unique up

to the sign of their rotation vectors. Interleaving the successive incremental rotations and the relative rotation gives rise to
split–join cycles. If the trajectories of the progressing relative rotations of the successively incrementally rotated common
boundary segment are traced on the plates while being rotated, these traces are of sinusoidal shape, where sinusoidal is
meant as a rough qualitative description rather than a properly parametrized expression.

6.2.1 Piecewise modeling of sinusoidal trajectories
The plates' absolute motion is to be modeled in terms of two sequences of successive incremental finite rotations R1 =
R(𝜔1, e1) and R2 = R(𝜔2, e2), respectively, corresponding to temporal lags of 1 Ma such that 𝜔1 = |𝜛1|(◦), 𝜔2 = |𝜛2|(◦).
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SCHAEBEN ET AL. 21

TABLE 3 Summary of numerical application of plate circuit.

Age 𝝎GON 𝝎NAC 𝝎MEP 𝚫𝝎MEP
.
𝝎MEP lat MEP lon MEP 𝜽 ||

.eMEP||

(Ma) (◦) (◦) (◦) (◦) (◦) (◦) (◦) (rad) (l)
500 1.230 0.420 1.201 1.201 1.201 −6.128 −28.016 NA 0.004
495 6.150 2.100 6.002 1.200 1.200 −6.292 −27.191 0.004 0.004
490 12.300 4.200 12.003 1.200 1.200 −6.465 −26.154 0.004 0.004
485 18.450 6.300 17.999 1.199 1.199 −6.602 −25.108 0.004 0.004
480 24.600 8.400 23.990 1.198 1.197 −6.705 −24.053 0.004 0.004
475 30.750 10.500 29.972 1.196 1.196 −6.771 −22.990 0.004 0.004
470 36.900 12.600 35.945 1.194 1.193 −6.801 −21.919 0.004 0.004
465 43.050 14.700 41.905 1.192 1.191 −6.794 −20.840 0.004 0.004
460 49.200 16.800 47.850 1.189 1.188 −6.749 −19.751 0.004 0.004
455 55.350 18.900 53.779 1.186 1.184 −6.667 −18.655 0.004 0.004
450 61.500 21.000 59.690 1.182 1.180 −6.545 −17.550 0.004 0.004
445 67.650 23.100 65.579 1.178 1.176 −6.384 −16.436 0.004 0.004
440 73.800 25.200 71.444 1.173 1.171 −6.182 −15.314 0.004 0.004
435 79.950 27.300 77.284 1.168 1.165 −5.938 −14.183 0.004 0.004
430 86.100 29.400 83.094 1.162 1.159 −5.651 −13.044 0.004 0.004

Note: col 1: geological age TAge; col 2: cumulative angle 𝜔GON of rotating GON with respect to EEC; col 3: cumulative angle 𝜔NAC of rotating NAC
with respect to EEC; col 4: accumulated total angle 𝜔MEP of rotating GON with respect to NAC about migrating Euler pole eMEP; col 5: difference
Δ𝜔MEP = (𝜔MEP(TAge)−𝜔MEP(TAge +Δt))∕Δt of cumulative angles of rotation per time step Δt = 5; col 6: instantaneous angular velocity .

𝜔MEP of
rotation about migrating Euler pole eMEP; col 7: latitude of migrating Euler pole eMEP; col 8: longitude of migrating Euler pole eMEP; col 9: angle
𝜃 = ∠(eMEP(TAge), eMEP(TAge + Δt))∕Δt of successive locations of migrating Euler pole per time step; col 10: scalar instantaneous trajectoral
velocity || .eMEP|| of Euler pole eMEP migrating along its path.

For each temporal lag, the relative motion of the two plates with respect to each other is modeled by R1R−1
2 or

(
R1R−1

2
)−1 =

R2R−1
1 , compare Section 5.2.1, which differ by the sign of their rotation vector, that is, either by the sign of their Euler pole

or by the sign of their angle of rotation.
The two spherical plates are assumed to initially have a common segment of boundary B0 given by an arc of a great

circle because edges of spherical polygons are arcs of great circles by definition. It is depicted in black in all of Figure 6.
The shape of the common boundary segment is actually not critical here. Eight points have been placed equidistantly
along the boundary segment to visualize individual trajectories.

The rotations R1 = R(𝜔1, e1) and R2 = R(𝜔2, e2) are defined by angles 𝜔1 = 30(◦), 𝜔2 = 15(◦) and Euler poles e1 and e2
as shown in Figure 6 as green and red bullets, respectively. The angles and accordingly the rates have been exaggeratedly
enlarged for the purpose of proper visualization only.

In the first step these rotations are applied to the two plates with special attention paid to their effect on the initial
common boundary segment B0 depicted in black. The common boundary segment B0 is split into two diverging margins
M11 = R1B0 and M12 = R2B0 depicted in green and red, respectively, in Figure 6A,B. For the eight points along the initial
boundary segment B0, the rotational trajectories with respect to R1 and R2, respectively, are correspondingly visualized as
green or red small circle arcs, compare in Figure 6A,B.

The Euler pole er of the relative rotations

R1R−1
2 = R12 = R(𝜔r, er) and

(
R1R−1

2
)−1 = R2R−1

1 = R21 = R(−𝜔r, er),

respectively, is shown as blue bullet. The trajectories of the corresponding relative rotation with angle𝜔r are shown as blue
small circle arcs linking the margins M11 and M12 by virtue of R1R−1

2 M12 = R12M12 = M11 or R2R−1
1 M11 = R21M11 = M12,

respectively, compare Figure 6B. The union of these trajectories constitutes the pattern 1.
To keep the notation tidy, the rotations

Qp = R (p𝜔r, er) and Qp = R ((p − 1)𝜔r, er) , 0 < p < 1, (49)

are defined. They decompose R12 and R21, respectively, such that

R12 = QpQ
−1
p = Q

−1
p Qp,R21 = QpQ−1

p = Q−1
p Qp,
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22 SCHAEBEN ET AL.

FIGURE 6 Three successive temporal steps of 1 Ma each of piecewise motion in terms of incremental rotations with rates
𝜛1 = 30(◦/Ma), 𝜛2 = 15(◦/Ma) about fixed absolute Euler poles e1 (green bullet) and e2 (red bullet). The location of the corresponding
relative Euler pole er is indicated by a blue bullet, the location of the pseudo Euler pole of Equation (8) is indicated by an open circle. Initial
setting (top left (A)), details of first step (top right (B), second row (C,D)), second step (third row left (E)), third step (third row right (F)), and
final pattern after three steps (bottom center (G)).. [Colour figure can be viewed at wileyonlinelibrary.com]

implying for instance QpR21Q
−1
p = I. It should be noted that Qp and Qp commute and that the angle of rotation Qp is

negative, (p − 1)𝜔r < 0, if 𝜔r > 0.
Then, a new joint boundary segment B1 of the two plates intermediate between the margins M11 and M12 is generated by

B1 = QpM12 = QpR2B0

= QpM11 = QpR1B0.

Generating an actual joint boundary in this way roughly simulates growth of both plates by rates of p and 1−p, respectively,
such that their relative location, that is, their relative orientation, is preserved even though the initial plates are torn apart
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SCHAEBEN ET AL. 23

from each other by rotations R1 and R2, respectively. For reasons of simplicity and ease of visualization p was set to p = 1
2

in this example, and the corresponding new joint boundary segment is depicted in blue in Figure 6B. Each small circle
arc linking the margins M11 and M12 may be split into two partial arcs linking M11 and B1 and M12 and B1. The pattern
comprising all partial arcs linking M11 and B1 is referred to as 11, the pattern comprising all partial arcs linking M12 and
B1 is referred to as 12, and 11 ∪ 12 = 1.

In the second step, the current boundary segment B1 and the pattern 11 are rotated by R1 resulting a new margin
M21 = R1B1 = R1QpR1B0 (green line of Figure 6C) and R111 (blue lines of Figure 6D) and analogously in another new
margin M22 = R2B1 = R2QpR2B0 and R212 (Figure 6C,D). Thus, the current boundary segment B1 is split into two
diverging margins M21 and M22. The trajectories of the rotation R1 about e1 and of the rotation R2 about e2 are plotted as
green and red small circle arcs in Figures 6C,D. The current margins M21 and M22 spawn a new incremental pattern 2

consisting of trajectories of the relative rotations R21 and R12, respectively, mapping M21 to M22 and vice versa. The pattern
2 may be thought of as divided into two partial patterns 21 and 22 with respect to the next new joint boundary segment

B2 = QpM22 = QpR2B1 = QpR2QpR2B0 =
(

QpR2
)(2)B0

= QpM21 = QpR1B1 = QpR1QpR1B0 =
(

QpR1

)(2)
B0,

intermediate between M21 and M22 as shown in Figure 6E. A parenthesized superscript of a rotation indicates manifold
concatenation of the rotation with itself. At this stage, the entire pattern of trajectories initially originating from relative
rotations about er comprises the two partial patterns R111 ∪ 21 and R212 ∪ 22.

In each consecutive step, the previous partial patterns to be rotated by R1 or R2, respectively, are extended by the union
of new partial incremental patterns 𝓁1 and 𝓁2, respectively, resulting from dividing 𝓁 with respect to the actual joint
boundary segment B𝓁 .

Thus, in the nth step, the actual diverging margins

Mn1 = R1Bn−1 = R1

(
QpR1

)(n−1)
B0, (50)

Mn2 = R2Bn−1 = R2
(

QpR2
)(n−1)B0,n ∈ N, (51)

imply the new incremental pattern n consisting of trajectories of the relative rotations R21 and R12 mapping Mn1 to Mn2,(
R2R−1

1
)

Mn1 =
(

R2R−1
1
)

R1Bn−1 = R2Bn−1 = Mn2, and vice versa. It should be noted that Mni is not the result of an
(n − 1)-fold rotation of B0 by Ri, i = 1, 2. Nevertheless, Equations (50) and (51) may be read as accumulating successive
concatenation of finite rotations, such that the actual margins Mn1 and Mn2 are related by

Mn2 =
(

R2
(

QpR2
)(n−1)

)(
R1

(
QpR1

)(n−1)
)−1

Mn1

= R2QpR2 … QpR2
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

n−1

R−1
1 Q

−1
p … R−1

1 Q
−1
p

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
n−1

R−1
1 Mn1

= R2R−1
1 Mn1,n ∈ N,

that is, their relative location is the same for all n ∈ N.
The actual joint boundary segment

Bn = QpMn1 =
(

QpR1

)
Bn−1 =

(
QpR1

)(n)
B0 (52)

= QpMn2 =
(

QpR2
)

Bn−1 =
(

QpR2
)(n)B0,n ∈ N, (53)
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24 SCHAEBEN ET AL.

in between the margins Mn1 and Mn2 can be seen as the result of the rotation of B0 by the n-fold concatenation of QpR1 or
QpR2, respectively. It divides the pattern n into two partial patterns n1 and n2 associated with Mn1 and Mn2, compare
Figure 6F. Equations (52) and (53) imply the relationships

Mn1 = Q
−1
p Bn and Mn2 = Q−1

p Bn, (54)

expressing the diverging margins Mn1 and Mn2 in terms of the current joint boundary segment Bn and the n-fold rotations
(QpR1)(n) and (QpR2)(n).

Eventually, at the nth stage, the two partial patterns are

n1 ∪ R1(n−1)1 ∪ R(2)
1 (n−2)1 ∪ … ∪ R(n−2)

1 21 ∪ R(n−1)
1 11

= n1 ∪
n−1⋃
𝓁=1

R(𝓁)
1 (n−𝓁)1 = n1 ∪

n−1⋃
𝓁=1

R(𝓁𝜔1, e1)(n−𝓁)1,
(55)

and analogously

n2 ∪ R2(n−1)2 ∪ R(2)
2 (n−2)2 ∪ … ∪ R(n−2)

2 22 ∪ R(n−1)
2 12

= n2 ∪
n−1⋃
𝓁=1

R(𝓁)
2 (n−𝓁)2 = n2 ∪

n−1⋃
𝓁=1

R(𝓁𝜔2, e2)(n−𝓁)2,
(56)

where the respective last equalities hold if the Euler poles e1 and e2 are stationary as assumed in this example.

FIGURE 7 Three temporal states of pattern of sinusoidal trajectories after 15 (top left (A)), 30 (top right (B)), and 45 Ma (bottom left (C))
of piecewise motion in terms of incremental rotations with rates 𝜛1 = 2.0(◦/Ma), 𝜛2 = 1.0(◦/Ma) about fixed absolute Euler poles e1 (green
bullet) and e2 (red bullet). The location of the corresponding relative Euler pole er is indicated by a blue bullet very close to the pseudo Euler
pole of Equation (8) (open circle ◦). Pattern (bottom right (D)) as displayed in Figure 6G for quick comparison. [Colour figure can be viewed
at wileyonlinelibrary.com]
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SCHAEBEN ET AL. 25

The union of all patterns of Equations (55) and (56) displayed in Figure 6G resembles the sinusoidal shape of flow
lines as observed by [17], compare Figure 8, and [18] to record the relative Jurassic motion of the plates of Africa and
Madagascar–Antarctica.

Figure 7 illustrates the same model for smaller rotation rates 𝜛1 = 2.0(◦/Ma) and 𝜛2 = 1.0(◦/Ma). Modeling as before
for temporal lags of 1 Ma such that the angles of rotation are 𝜔1 = 2.0(◦) and 𝜔2 = 1.0(◦), the corresponding relative
Euler pole (blue bullet) is much closer to the pseudo Euler pole of Equation (8) (open circle) located on the great circle
spanned by the two absolute Euler poles (green and red bullets). To evolve the patterns of sinusoidal trajectories as before,
the model requires more incremental steps to cover the same total period of time. Actually, the states after 15, 30, and
45 Ma are displayed in Figure 7A–C, Figure 7D repeats Figure 6G for immediate comparison.

6.2.2 Continuous modeling of sinusoidal trajectories
The cumulative notation of Equations (50), (51), and (54) suggests a rephrasing of the model in terms of continuous
rotations assuming as before fixed Euler poles ei, i = 1, 2, and constant rotation rates 𝜛i such that 𝜔i(t) = t𝜛i, i =
1, 2. Replacing the counter n of proceeding steps by a continuous variable t ∈ [0,∞) representing time leads to Ri(t) =
Ri(t𝜛i, ei), i = 1, 2, and Qp(t) = R (p𝜔r(t), er) and Qp(t) = R ((p − 1)𝜔r(t), er) corresponding to Equation (49). Then, the
continuous model reads

B(t) = Qp(t)R1(t)B0 = Qp(t)R2(t)B0, (57)

M1(t) = Q
−1
p (Δt)B(t), (58)

M2(t) = Q−1
p (Δt)B(t), t ∈ [0,∞), (59)

where Equation (57) represents the instantaneous joint boundary segment B(t) split into the instantaneous divergent
margins M1(t) and M2(t) represented by Equations (58) and (59) implying as before M2(t) = R2(Δt)R−1

1 (Δt)M1(t). The
complete pattern(t) of trajectories at time t > 0 depends on the lengths of split–join cycles and their total number during

FIGURE 8 Plate tectonic constellation 125 Ma ago. Africa (upper left) and Madagascar–Antarctica (lower right) represent the plates of
West and East Gondwana, respectively. The Mesozoic breakup of Gondwana resulted in the opening of oceanic basins due to sea floor
spreading at the divergent plate boundaries and left the pattern of sinusoidal flow lines of the ocean floor as depicted. Figure courtesy of
Oxford Journal and the Royal Astronomical Society, fig. 13, C34o, p. 714, from [17], A model of plate kinematics in Gondwana breakup,
Geophysical Journal International 173, 703–717. [Colour figure can be viewed at wileyonlinelibrary.com]
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26 SCHAEBEN ET AL.

the time span [0, t] controlled by the parameter Δt. It comprises the most recent incremental partial patterns and multiple
rotated previous partial patterns analogously to the piecewise model.

6.2.3 Geological perspectives
The continuous model has to be sampled at discrete times to evaluate it numerically. When sampling the continuous
model at times corresponding to the time lag of the discrete model, the numerical realizations of the models cannot be
distinguished.

Of course, there are more models to approximate and eventually simulate patterns of sinusoidal trajectories. For
instance, if the rotational rate 𝜛1 is not constant but increasing, then the relative location of M1(t) and M2(t) is no longer
stationary but varies with t, and the relative Euler poles migrate along a path close to the great circle spanned by the
two absolute Euler poles e1 and e2. Considering transient rates 𝜛1(t) > 𝜛2(t) and transient Euler poles e1(t), e2(t) turns
the model only slightly more intricate in terms of its parameters but much more flexible, eventually allowing for the
simulation of geologically given patterns of sinusoidal trajectories.

It may be inferred here that extraordinary geological events changing the tectonic regime or sets of jumping Euler
poles are not necessarily required to explain and model sinusoidal flow lines as illustrated in Figure 8. More geoscience
implications will be elaborated on in a companion paper to be published elsewhere.

7 CONCLUSIONS

Our communication aims for an overdue update and revision of textbook knowledge as Cox and Hart [13] for instance and
completion of the Appendix (277–278) of Le Pichon et al. [2]. Turned constructive, it instructively resolves the three-plate
problem in general, and provides a first rough approximation of sinusoidal trajectories of observed motion of tectonic
plates for example.

In greater detail

• The terms infinitesimal, instantaneous, and finite rotation are discussed and clarified and an extension to continuous
rotations in terms of transient unit quaternions is presented.

Historically, the mathematical construct of infinitesimal rotations may have been instrumental to develop the notion
of instantaneous entities with respect to circular motion on spheres. However, they do not prove suitable to properly
model finite rotations or finite rotational motion of tectonic plates numerically. In fact, their application was often
flawed by confusing an infinitesimal angle of rotation with a small yet finite angle of rotation. Since small angle approx-
imations provide all it takes, infinitesimal rotations are rendered obsolete for applications to modeling the kinematics
of plate tectonics. Mastering fully transient quaternions should finally substantiate to abandon infinitesimal rotations
in quantitative plate tectonics.

• The notion of plate circuit is put on sound mathematical grounds and characterized as property of finite rotations.
Thus, it is exempted from references to infinitesimal rotations and triple junctions. The required assumptions and
corresponding validity of its various forms are clarified and contrasted to textbook representations which must not be
read in a strict sense but as implicit approximations. Eventually, it is generalized for transient rotations.

• Two discrete models of circular motion of tectonic plates on the sphere by sequences of (i) incremental finite rotations
or (ii) accumulating successive concatenations of finite rotations are presented which are consistent and compatible.
They provide different stepwise approximating views of the same motion. In particular, given two plates and their
absolute rotations, the models differ in their corresponding relative rotation referring to different spatial references.

From the point of view of successively accumulating concatenations of finite rotations, the Euler pole of the relative
rotation migrates, its motion is not generally along any circle and not uniform. Moreover, the relative rotation about
the migrating Euler pole is not uniform, that is, the rotation rate of the relative rotation is not constant albeit constant
individual rates of the involved absolute rotations.

• Continuous rotation in terms of time-dependent quaternion and its temporal derivative provide the methodology of a
continuous representation of plates' motion and turn its stepwise approximation into a proper yet incomplete view, for
example, in terms of mean versus instantaneous angular velocities.

• To explain traces of long-term motions of tectonic plates of more complex shape than, for instance, transform faults
aligned with small circle arcs centered at some Euler pole, does not require extraordinary geological events, that is,
changes of the tectonic regime. It has been demonstrated here for the first time that the formation of sinusoidal flow
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lines and the cause of the migration of Euler poles and its features can be explained and modeled within a unique
steady setting. Thus, the paradigm of plate tectonics that traces of long-term motions of plates devise simple geometric
patterns as long as the tectonic regime does not change has been questioned in a constructive way.
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